Strategy of damping vibration of structures with piezoelectric elements and external electrical circuits and their experimental illustration

Abstract


This paper presents basic concepts of smart-materials and strategies of vibration damping structures with piezoelectric elements and external circuits, based on the well-known works. Different variants of external passive electrical circuits consisting of resistors, inductance and capacitance, and the main circuit of active electric circuits with feedback and feed forward adaptive filtering are considered. The authors presented the results of experimental studies on damping vibrations of cantilever steel beam with different types of external passive electrical circuits and the locations of piezoelectric elements. Research results lead to the following conclusions: the use of resonant circuits for the damping of vibrations of the structure is more effective than the resistive circuits; vibration damping increases when piezoelectric elements are placed in the zones with the largest gradient forming; parallel connection to an external electrical circuit of additional piezoelectric elements allows achieving a greater degree of vibration damping and decrease of values related to optimal inductance and resistance; there are modes of vibration of structures, in which there are no sufficient in size electric potential at the surface of the piezoelectric elements, to be able to use the piezoelectric damping of the oscillation mode; optimal parameters of a shunt circuit for the corresponding vibration modes do not depend on the amplitude of the oscillations determined by levels of external influence. The paper presents the results of the experiment on damping vibrations at impact loading through the use of the active external electric circuit in case of feedback control.

About the authors

M A Yurlov

Institute of Continuous Media Mechanics UrB RAS

Email: yurlovm@icmm.ru

N A Yurlova

Institute of Continuous Media Mechanics UrB RAS

Email: yurlova@icmm.ru

References

  1. Smart materials for the 21st Century. ForesightSmart Materials Taskforce. Report Smart Materials & Systems Committee no. FMP/03/04/IOM3 56 p, available at: http://www.iom3.org/content/smart-materials-systems-foresight (accessed 20 October 2014).
  2. Moheimani S.O.R., Fleming A.J. Piezoelectric transducers for vibration control and damping. - Wien: Springer-Verlag, 2006. - 272 p.
  3. New Actuators for Aircraft and Space Applications / P. Jänker, F. Claeyssen, B. Grohmann, M. Christmann, T. Lorkowski, R. LeLetty, O. Sosniki, A. Pages // ACTUATOR-2008, 11th International Conference on New Actuators, Bremen, Germany, 9-11 June 2008. - Bremen, 2008. - P. 346-354.
  4. Kauffman J.L., Lesieutre G.A. Piezoelectric-Based Vibration Reduction of Turbomachinery Bladed Disks via Resonance Frequency Detuning // AIAA Journal, 2012. - Vol. 50. - No. 5. - P. 1137-1144.
  5. Nader M., Irschik H., Garßen H.-G. v. Aktive Schwingungs compensation im Leichtbau mit piezoelektrischen Materialien. Internationales Forum Mechatronik. - Linz, 2006.
  6. Nuffer J., Bein T. Application of piezoelectric materials in transportation industry // Global Symposium on Innovative Solutions for the Advancement of the Transport Industry, 4-6. October 2006. - Spain, San Sebastian. - 11 p.
  7. Kajiwara I., Uchiyama T., Arisaka T. Vibration Control of Hard Disk Drive with Smart Structure Technology for Improving Servo Performance /Eds. H. Ulbrich and L. Ginzinger // Motion and Vibration Control. - Springer Science+Business Media B.V., 2009. - P. 165-176.
  8. Bronowicki A.J., Abhyankarand N.S., Griffin S.F. Active vibration control of large optical space structures // Smart Mater. Struct., 1999. - No. 8. - P. 740-752.
  9. Nye T.W., Manningand R.A., Qassim K. Performance of active vibration control technology: the ACTEX flight experiments // Smart Mater. Struct. - 1999. - No. 8. - P. 767-780.
  10. Akhras G. Smart materials and smart systems for the future // Canadian Military Journal. - 2000. - No. 3. - P. 25-32.
  11. Janos B.Z., Hagood N.W. Owerview of active fiber composite technologies // MST News. Actuator Applications. Home Automation. - 1998. - № 3. - P. 25-29.
  12. Моделирование и оптимизация динамических характеристик smart-структур с пьезоматериалами / В.П. Матвеенко, Е.П. Клигман, М.А. Юрлов, Н.А. Юрлова // Физическая мезомеханика. - 2012. - Т. 15, № 1. - С. 75-85.
  13. Клигман Е.П., Матвеенко В.П., Юрлова Н.А. Динамические характеристики тонкостенных электроупругих систем // Известия РАН, МТТ. - 2005. - № 2. - С. 179-187.
  14. Hagood N.W, Von Flotow A. Damping of structural vibrations with piezoelectric materials and passive electrical networks // Journal of Sound and Vibration. - 1991. - Vol. 146. - No. 2. - P. 243-268.
  15. Forward R.L. Electronic damping of vibrations in optical structures // Journal of Applied Optics. - 1979. - Vol. 18. - No. 5. - P. 690-697.
  16. Lesieutre G.A. Vibration damping and control using shunted piezoelectric materials // The Shock and Vibration Digest. - 1998. - No. 30 - P. 187-195.
  17. Agnes G.S., Mall S. Structural integrity issues during piezoelectric vibration suppression of composite structures // Composites. - 1999. - Part B 30. - P. 727-738.
  18. Caruso G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping // Smart Mater. Struct. - 2001. - No. 10. - P. 1059-1068.
  19. Park C.H., Inman D.J. Enhanced Piezoelectric Shunt Design // Shock and Vibration. - 2003. - Vol. 10. - No. 2. - P. 127-133.
  20. Moheimani S.O.R., Fleming A.J., Behrens S. On the feedback structure of wideband piezoelectric shunt damping systems // Smart Mater. Struct., 2002. - No. 12. - P. 49-56.
  21. Wu S.Y. Piezoelectric Shunts with Parallel R-L Circuit for Structural Damping and Vibration Control / Proc. SPIE Smart Structures and Materials, Passive Damping and Isolation // SPIE. - 1996. - Vol. 2720. - P. 259-269.
  22. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.
  23. On piezoelectric energy conversion for electronic passive damping enhancement / D.L. Edberg, A.S. Bicos [et al.] // Proceedings of Damping’91, 1991. - US Air Force, San Diego, CA., 1991. - P. GBA-1.
  24. Hollkamp J.J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts // Journal of Intelligent Materials, Systems and Structures. - 1999. - No. 5. - P. 49-57.
  25. Riordan R.H.S. Simulated inductors using differential amplifiers // Electronics Letters. - 1967. - Vol. 3. - No. 2. - P. 50-51.
  26. Maciejewski I., Oleskiewicz R., Krzyzynski T. Active control of vibration in small and medium amplitude range of elements in automotive systems // Arch. Appl. Mech. - 2009. - Vol. 79. - P. 587-594.
  27. Moheimani S.O.R., Vautier B.J.G. Resonant control of structural vibration using charge-driven piezoelectric actuators // IEEE Transactions on Control Systems Technology. - 2005. - Vol. 13. - No. 6 - P. 1021-1035.
  28. Preumont A. Active vibration control. 2001. - 43 р, available at: http://www.ippt.gov.pl/~smart01/lectures/preumont.pdf (accessed 10 October 2014).
  29. Bianchini E. Active Vibration Control of Automotive Steering Wheels // SAE International. - 2005. - No. 1. - P. 2546-2552.
  30. Liao Y., Sodano H.A. Modeling and Comparison of Bimorph Power Harvesters with Piezoelectric Elements Connected in Parallel and Series // Journal of Intelligent Material Systems and Structures. - 2010. - No. 21. - P. 149-159.
  31. Viana F.A.C., Steffen V., Jr. Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits // J. of the Braz. Soc. of Mech. Sci. & Eng. July-September 2006. - 2006. - Vol. XXVIII. - No. 3. - P. 293-310.
  32. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.
  33. Kim H., Tadesse Y., Priya S. Piezoelectric Energy Harvesting // Energy Harvesting Technologies. - 2009. - 524 p. doi: 10.1007/978-0-387-76464-1
  34. Бахилина И.М., Степанов С.А. Синтез грубых линейных квадратичных гауссовских регуляторов // Автоматика и телемеханика. - 1998. - № 7. - С. 96-106.
  35. Методы классической и современной теории автоматического управления: учебник: в 3 т. Т. 3: Методы современной теории автоматического управления / под ред. Н.Д. Егупова. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2000. - 748 с.
  36. Active suppression of nonlinear composite beam vibrations by selected control algorithms / J. Warminski, M. Bochenski, W. Jarzyna, P. Filipek, M. Augustyniak // Commun. Nonlinear Sci. Numer. Simulat. - 2011. - No. 16. - P. 2237-2248.
  37. Kozlowski M.V., Cole D.G., Clark R.L. A Comprehensive Study of the RL Series Resonant Shunted Piezoelectric: A Feedback Controls Perspective // Journal of Vibration and Acoustics. - 2011. - Vol. 133. - No. 2. - P. 1-10.
  38. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.

Statistics

Views

Abstract - 32

PDF (Russian) - 59

Cited-By


PlumX


Copyright (c) 2014 Yurlov M.A., Yurlova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies