Mathematical modelling of deformation and damage accumulation under cyclic loading


In order to construct a theory that adequately describes the effects of cyclic loadings, it is initially necessary to analyze the experimental plastic loop of a hysteresis stainless steel SS304; and three types of backstresses responsible for the displacement of the center of the surface of loading are specified on this steel. For each type of backstresses we have formulated evolutionary equations on basis of the equations of the theory of plastic flow in the combined hardening. We have allocated the material functions which close the theory,. We have also formulated the basic experiment and method of the material functions identification. Evaluating the work of different types of backstresses on the field of plastic deformations under cyclic loadings with various magnitude of the deformation up to the experimental values of the number of cycles before failure, it has been obtained that the work of backstresses second type is a universal characteristic of the material. This result made it possible to formulate the kinetic equation of damage accumulation, based on which we have considered the nonlinear processes of damage accumulation. To determine the material functions responsible for the destruction, we have formulated the basic experiment and identification method. The authors have given material functions for stainless steel SS304. We have investigated the processes of elastic-plastic deformation of stainless steel SS304 with non-stationary hard cyclic loading under block changes of amplitude and mean deformation of the cycle. Also the processes of soft non-stationary and non-symmetric cyclic loading (ratcheting) under block changes of amplitude and mean stress cycle have been examined. The results of calculations are compared with the experimental results. Computational research of nonlinear processes of damage accumulation and low cycle fatigue of stainless steel SS304 are conducted under symmetric hard cyclic loading both at the constant amplitude of strain and block change of the amplitude of strain. The calculation results show that the scope of deformation reduction leads to increase of the nonlinearity of damage accumulation, while the increase of the deformation scale results in the fact that the accumulation of damages tends to be linear. There is a significant deviation from the rule of linear summation of damages under a satisfactory conformity of calculation results with the experiments. The paper presents such new results as: - specifying three types of backstresses responsible for kinematic hardening analyzing the experimental loops of plastic hysteresis; - establishing the work universality of the second type backstresses under low-cycle and high-cycle fatigue on basis of experimental results analysis; - constructing the theory of plastic flow under combined hardening and kinetic equations of damage accumulation on the basis of the evolution equations for three types of backstresses; - identifying the material parameters and verifying the proposed theory.

About the authors

V S Bondar

Moscow State University of Mechanical Engineering (MAMI)

38, B.Semenovskaya st., 107023, Moscow, Russian Federation

V V Danshin

Moscow State University of Mechanical Engineering (MAMI)

38, B.Semenovskaya st., 107023, Moscow, Russian Federation

D A Makarov

Moscow State University of Mechanical Engineering (MAMI)

38, B.Semenovskaya st., 107023, Moscow, Russian Federation


  1. Бондарь В.С. Неупругость. Варианты теории. - М.: Физматлит, 2004. - 144 с.
  2. Бондарь В.С., Даншин В.В. Пластичность. Пропорциональные и непропорциональные нагружения. - М.: Физматлит, 2008. -176 с.
  3. Bondar V.S. Inelasticity. Variants of the theory. - New York: Begell House, 2013. - 194 p.
  4. Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. - М.: Физматлит, 2008. - 424 с.
  5. Bari S., Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation // International Journal of Plasticity. - 2002. - Vol. 18. - P. 873-894.
  6. Kang G., Liu Y., Ding J., Gao Q. Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled viscoplastic constitutive model // Int. J. of Plasticity. - 2009. - Vol. 25. - P. 838-860.
  7. Kan Q., Kang G. Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature. // Int. J. of Plasticity. - 2009. doi: 10.1016/j.ijplas.2009.08.005.
  8. Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. of Plasticity. - 2008. - Vol. 24. - P. 1642-1692.
  9. Rahman S.M., Hassan T., Corona E. Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure // Int. J. of Plasticity. - 2008. - Vol. 24. - P. 1756-1791.
  10. Abdel-Karim M. Modified kinematic hardening rules for simulations of ratchetting // Int. J. of Plasticity. - 2009. - Vol. 25. - P. 1560-1587.
  11. Abdel-Karim M. An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting // Int. J. of Plasticity. - 2010. - Vol. 26. - P. 711-730.
  12. Dafalias Y.F., Feigenbaum H.P. Biaxial ratchetting with novel variations of kinematic hardening // Int. J. of Plasticity. - 2011. - Vol. 27. - P. 479-491.
  13. Chaboche J.-L., Kanouté P., Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions // Int. J. of Plasticity. - 2012. - Vol. 35. - P. 44-66.
  14. Новожилов В.В. О сложном нагружении и перспективах феноменологического подхода к исследованию микронапряжений // ПММ. - 1964. - Т. 28, вып. 3. - С. 393-400.
  15. Chaboche J.-L., Dang-Van K., Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel // Proceedings of the 5th International Conference on SMiRT. Div L. - Berlin, 1979. - Paper No. L. 11/3.
  16. Ишлинский А.Ю. Общая теория пластичности с линейным упрочнением // Укр. матем. журн. - 1954. - Т. 6, вып. 3. - С. 314-324.
  17. Prager W. A new method of analyzing stresses and strains in work hardening plastic colids // ASME J. Appl. Mech. - 1956. - Vol. 23. - P. 493-496.
  18. Amstrong P.J., Frederick C.O. A mathematical represention of the multiaxial bauscinger effect // CEGB Report No. RD/B/N/ 731. - 1966.
  19. Кадашевич Ю.И. О различных тензорно-линейных соотношениях в теории пластичности // Исследования по упругости и пластичности. - Л.: Изд-во ЛГУ, 1967. - Вып. 6. - С. 39-45.
  20. Ohno N., Wang J.-D. Kinematic hardening rules with critical state of dynamic recovery. Part 1. Formulations and basic features for ratcheting behavior // International Journal of Plasticity. - 1993. - Vol. 9. - P. 375-390.
  21. Бондарь В.С., Бурчаков С.В., Даншин В.В. Математическое моделирование процессов упругопластического деформирования и разрушения материалов при циклических нагружениях // Проблемы прочности и пластичности: межвуз. сб. Вып. 72. - Н. Новгород: Изд-во Нижегород. гос. ун-та, 2010. - С. 18-27.
  22. Новожилов В.В., Рыбакина О.Г. О перспективах построения критерия прочности при сложном нагружении // Прочность при малом числе нагружения. - М.: Наука, 1969. - С. 71-80.
  23. Романов А.Н. Энергетические критерии разрушения при малоцикловом нагружении // Проблемы прочности. - 1974. - № 1. - С. 3-10.
  24. Бондарь В.С., Горохов В.Б., Санников В.М. Исследование малоцикловой прочности оболочек вращения при сложном теплосиловом нагружении // Прикладные проблемы прочности и пластичности. Механика деформируемых систем: всесоюз. межвуз. сб. / Горьк. ун-т. - 1979. - Вып. 12. - С. 120-126.
  25. Guozheng Kang, Qing Gao, Lixun Cai, Yafang Sun. Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures // Nuclear Engineering and Design. - 2002. - Vol. 216. - P. 13-26.
  26. Guozheng Kang, Qing Gao, Xianjie Yang. Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures // Mechanics of Materials. - 2002. - Vol. 34. - P. 145-159.
  27. Бондарь В.С. Некоторые новые результаты исследования пластичности материалов при сложном нагружении // Упругость и неупругость. - М: ЛЕНАНД, 2006. - С. 94-109.
  28. Гусенков А.П. Прочность при изотермическом и неизотермическом малоцикловом нагружении. - М.: Наука, 1979. - 295 с.
  29. Соотношения модели поврежденной среды для материалов, подвергающихся терморадиационным воздействиям / С.А. Капустин, В.А. Горохов, О.Ю. Виленский, В.Б. Кайдалов, А.А. Руин // Проблемы прочности и пластичности. - 2012. - Вып. 74. - С. 5-15.
  30. Волков И.А., Казаков Д.А., Коротких Ю.Г. Экспериментально-теоретические определения параметров уравнений механики поврежденной среды при усталости и ползучести // Вестник Перм. нац. исслед. политехн. ун-та. Механика. - 2012. - № 2. - С. 50-78.
  31. Бондарь В.С., Даншин В.В., Семенов П.В. Нелинейные процессы накопления повреждений при нестационарных циклических нагружениях // Проблемы прочности и пластичности. - 2012. - Вып. 75. - Ч. 2 - С. 96-104.
  32. Бернард-Конноли, Бью Куок, Бирон. Усталость коррозионностойкой стали 304 при испытаниях в условиях многоступенчатой контролируемой деформации // Теор. основы инж. расчетов. - 1983. - № 3. - С. 47-53.
  33. Васин Р.А. Экспериментально-теоретическое исследование определяющих соотношений в теории упругопластических процессов: дис. … д-ра физ.-мат. наук. - М.: Изд-во МГУ, 1987. - 387 с.



Abstract - 60

PDF (Russian) - 109



Copyright (c) 2014 Bondar V.S., Danshin V.V., Makarov D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies