Mechanical properties of technical plasticine under static and dynamic loadings
- Authors: Sapozhnikov SB1, Ignatova AV1
- Affiliations:
- South Ural State University
- Issue: No 2 (2014)
- Pages: 200-219
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/304
- DOI: https://doi.org/10.15593/perm.mech/2014.2.200-219
- Cite item
Abstract
This paper presents experimental studies of the mechanical properties of technical plasticine - which is a composite material consisting of a matrix (a mixture of wax and oils) and particulate filler (talc, clay, pigments) - under tension, compression, shear and penetration of a spherical indenter. At a constant strain rate (tension, compression) “stress - strain” diagrams have been obtained and characterized by a small elastic zone and yield strains up to 15-20 %. On the basis of experimental data power law for dependence of yield strength vs the strain rate in the range of 0.0004 ... 80 s-1 have been obtained. Thus, the deformation of technical plasticine can be described by viscoelastic Norton-type model with a serial connection of elastic and viscous elements. Under the tensile and shear strain of the technical plasticine over 3…5 % it begins to rapidly accumulate scattered microdamages, which does not allow using shear test as a test for determination of the yield stress like in the known methods related to metals. The yield stresses under tension and compression are close at the same strain rates. A linear diagram “force - penetration depth” down to a depth of 3 mm are obtained at penetration of a spherical indenter with a diameter of 43 mm in a plasticine block of 75 mm thick. Thus, the plasticine hardness is constant at a certain strain rate. The authors have managed to get dynamic hardness as the energy of a falling body, divided by the volume of cavity in the plasticine. Static and dynamic penetration is a promising method for the study of plastic properties of materials because of its simplicity. However it is necessary to establish the correlation coefficient relating hardness and yield stress. For the considered material such ratio is 0.24 at the frictionless condition.
About the authors
S B Sapozhnikov
South Ural State University
Email: ssb@susu.ac.ru
76, Lenin av., Chelyabinsk, Russian Federation, 454080
A V Ignatova
South Ural State University
Email: ign.nastya@gmail.com
76, Lenin av., Chelyabinsk, Russian Federation, 454080
References
- NIJ Standard-0101.04. Ballistic Resistance of Personal Body Armor / National Institute of Justice Office of Science and Technology, September 2000. - 67 p.
- NIJ Standard-0115.00. Stab Resistance of Personal Body Armor / National Institute of Justice Office of Science and Technology, September 2000. - 46 p.
- Park J.-J. Finite-element analysis of cylindrical-void closure by flat-die forging // ISIJ International. - 2013. - Vol. 53. - No. 8. - P. 1420-1426.
- Segawa A., Kawanami T. Rolling-deformation characteristics of clad materials determined by model experiment and numerical simulation: experimental rolling tests using plasticine // Journal of Materials Processing Technology. - 1995. - Vol. 47. - P. 375-384.
- Zulauf J., Zulauf G. Rheology of plasticine used as rock analogue: the impact of temperature, composition and strain // Journal of Structural Geology. - 2004. - Vol. 26. - P. 725-737.
- Exploring material flow in friction stir welding: Tool eccentricity and formation of banded structures / F. Gratecap, M. Girard, S. Marya, G. Racineux // International Journal of Material Forming. - 2012. - Vol. 5. - P. 99-107. doi: 10.1007/s12289-010-1008-5
- An inverse technique for evaluation of flow parameters of modeling materials using extrusion / K.K. Pathak, A.K. Soni, M. Sharma, M.M. Sahu // Experimental Techniques. - 2013. - Vol. 37. - No. 2. - P. 16-22. doi: 10.1111/j.1747-1567.2011.00745.x
- Sofuoglu H., Rasty J. Flow behavior of Plasticine used in physical modeling of metal forming processes // Tribology International. - 2000. - Vol. 33. - P. 523-529.
- Bhattacharjee D., Kumar A., Biswas I. Energy absorption and dynamic deformation of backing material for ballistic evaluation of body armour // Defence Science Journal. - 2013. - Vol. 63. - No. 5. - P. 462-466.
- Johnson W., Sengupta A.K., Ghosh S.K. Plasticine modelled high velocity oblique impact and ricochet of long rods // International Journal of Mechanical Sciences. - 1982. - Vol. 24. - No. 7. - P. 437-455.
- Долганина Н.Ю. Оценка баллистического предела и прогиба многослойных тканевых пластин при ударе индентором // Вестник ЮУрГУ. Машиностроение. - 2010. - Вып. 15, № 10 (186). - С. 17-23.
- Bivin Yu. K. Strain and Fracture of Circular Plates under Static and Dynamical Loading by a Spherical Body // Mechanics of Solids. - 2008. - Vol. 43. - No. 5. - P. 798-807. doi: 10.3103/S0025654408050154
- Bivin Yu.K., Simonov I.V. Mechanics of Dynamic Penetration into Soil Medium // Mechanics of solids. - 2010. - Vol. 45. - No. 6. - P. 892-920. doi: 10.3103/S0025654410060130
- Karahan M., Kus A., Eren R. An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics // International Journal of Impact Engineering. - 2008. - Vol. 35. - No. 6. - P. 499-510.
- Cork C.R., Foster P.W. The ballistic performance of narrow fabrics // International Journal of Impact Engineering. - 2007. - Vol. 34. - No. 3. - P. 495-508. doi: 10.1016/j.ijimpeng.2005.10.006
- Исследование закономерностей локализации пластической деформации при высокоскоростном пробивании образцов из сплава А6061 / Е.А. Ляпунова, М.А. Соковиков, В.В. Чудинов, С.В. Уваров, О.Б. Наймарк // Вестник Перм. нац. исслед. политехн. ун-та. Механика. - 2010. - № 2. - С. 79-86.
- Zhang P., Li S.X., Zhang Z.F. General relationship between strength and hardness // Materials Science and Engineering: A. - 2011. - Vol. 529. - P. 62-73.
- Стоев П.И., Мощенок В.И. Определение механических свойств металлов и сплавов по твердости // Вестник Харьковского научного университета им. Каразина. - 2003. - Т. 601, № 2(22). - С. 106-112.
- Марковец, М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979. - 191 с.
- Лурье А.И. Теория упругости. - М.: Наука, 1970. - 940 с.
- Филоненко-Бородач М.М. Теория упругости. - М.: Гос. изд-во физ.-мат. лит., 1959. - 364 с.