IDENTIFICATION METHOD OF GRADIENT MODELS PARAMETERS OF INHOMOGENEOUS STRUCTURES BASED ON DISCRETE ATOMISTIC SIMULATIONS

Abstract


This paper considers characteristics, features and corresponding boundary value problems of gradient theories of elasticity. A brief description of one-parametric applied model, which is one of the several variants of the gradient elasticity theories is given here. In relation to that, we represent a con- tinuum gradient model of two-phase composite structures that allow evaluation of the influence of scale parameters on their effective mechanical properties.In identifying the additional physical parameters of gradient elasticity models, a new method is introduced where a comparison of the results of continuum and discrete-atomistic modelling for specific tested heterogeneous structures is made. As a result we suggested a procedure and the respective algorithm defining the additional parameter of applied gradient continuum model of heterogeneous me- dia; and in such procedure, an interphase zone is characterized at the contact surface of a two-phase composite and the scale effects represented by cohesions-interaction fields, which are localized near to the boundaries of contact surfaces. This additional physical parameter of gradient model is found through parameters of potentials, which are used to describe the specific studied structure in the dis- crete-atomistic modelling.To justify and validate the proposed method, a numerical investigation is conducted and com- parison is made between the results of continuum and discrete-atomistic modelling. The examination reveals that a high degree of accuracy of prediction can be provided by the continuum one-parametric gradient theory when describing the effective properties of countable multiple set of two-phase hetero- geneous studied structures, which are formed by atomic substructures with various properties (various parameters of potentials).Finally, it is demonstrated that the identification method of parameters in gradient elasticity theo- ries for heterogeneous structures is well described by Leonard-John potential and Morse potential. Fur- thermore, we consider that when the parameters of potentials are known, the various types of cross interactions of atoms can be treated as ‘ideal’ or ‘damaged’ interactions as per Lorentz-Berthelot’s rule.

About the authors

S A Lurie

Institute of Applied Mechanics RAS

Email: lurie@ccas.ru
7, Leningradsky av., 125040, Moscow, Russian Federation

Y O Solyaev

Institute of Applied Mechanics RAS

Email: yos@iam.ras.ru
7, Leningradsky av., 125040, Moscow, Russian Federation

References

  1. Toupin R.A. Elastic materials with couple stresses // Arch. Rational Mech. Anal. - 1962. - Vol. 11. - P. 385-414. doi: 10.1007/BF00253945
  2. Mindlin R.D. Micro-structure in linear elasticity // Arch. Rational Mech. Anal. - 1964. - Vol. 16. - P. 51-78. doi: 10.1007/BF00248490
  3. Mindlin R.D. Second gradient of strain and surface-tension in linear elasticity // Int. J. Solids Struct. - 1965. - Vol. 1. - P. 417-438. doi: 10.1016/0020-7683(65)90006-5
  4. Mindlin R.D., Eshel, N.N. On first strain-gradient theories in linear elasticity // Int. J. Solids Struct. - 1968. - Vol. 4. - P. 109-124. doi: 10.1016/0020-7683(68)90036-X
  5. Auffray N., Le Quang H., He H.C. Matrix representations for 3D strain-gradient elasticity // J. Mech. Phys. Solids. - 2013. - Vol. 61. - P. 1202-1223. doi: 10.1016/j.jmps.2013.01.003
  6. Papanicolopulos S.A. Chirality in isotropic linear gradient elasticity // Int. J. Solids Struct. - 2011. - Vol. 48. - P. 745-752. doi: 10.1016/j.ijsolstr.2010.11.007
  7. Dell’Isola F., Sciarra G., Vidoli, S. Generalized Hooke’s law for iso-tropic second gradient materials // Proc. R. Soc. A. - 2009. - Vol. 465. - P. 2177-2196. doi: 10.1098/rspa.2008.0530
  8. Gao X.-L., Park S.K. Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem // Int. J. Solids Struct. - 2007. - Vol. 44. - P. 7486-7499. - doi: 10.1016/j.ijsolstr.2007.04.022
  9. Ma H.M., Gao X.-L., Reddy J.N. A microstructure-dependent Ti-moshenko beam model based on a modified couple stress theory // J. Mech. Phys. Solids. - 2008. - Vol. 56. - P. 3379-3391. doi: 10.1016/j.jmps.2008.09.007
  10. Kakunai S., Masaki J., Kuroda R., Iwata K., Nagata R. Measurement of apparent Young's modulus in the bending of cantilever beam by heterodyne holographic interferometry // Exp. Mech. - 1985. - Vol. 25. - P. 408-412. doi: 10.1007/BF02321341
  11. Experiments and theory in strain gradient elasticity / D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong // J. Mech. Phys. Solids. - 2003. - Vol. 51. - P. 1477-1508. doi: 10.1615/IntJMultCompEng.2013006064
  12. McFarland A.W., Colton J.S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors // J. Micromech. Mi-croeng. - 2005. - Vol. 15. - P. 1060-1067. doi: 10.1088/0960-1317/15/5/024
  13. Mura T. Micromechanics of defects in solids. - Boston. MA: Martinus Nijhoff Publishers, 1982. - 587 p.
  14. Li T., Lang E. Stiffness predictions for unidirectional short-fiber com-posites: review and evaluation // Comp Sci Technol. - 1999. - Vol. 59. - P. 655-671. doi: 10.1016/S0266-3538(98)00120-1
  15. Odegard G.M, Gates T.S. Constitutive modeling of nanotube/poly¬mer composites with various nanotube orientation // Proceedings Annual Conference on Experimental and Applied Mechanics. - Milwaukee 2002. - P. 1-4.
  16. Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metallurg. - 1973. - Vol. 21. - P. 571-574.
  17. Tibbetts G.G., McHugh J.J. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices // J Mater Res. - 1999. - Vol. 14. - P. 2871-2880. doi: 10.1007/978-94-010-0777-1_17
  18. Advanced theoretical and numerical multiscale modeling of cohe-sion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites / S. Lurie, D. Volkov-Bogorodsky, V. Zubov, N. Tuch¬kova // Computational Materials Science. - 2009. - Vol. 45. - No. 3. - P. 709-714. doi: 10.1016/j.commatsci.2008.08.010
  19. Лурье С.А., Соляев Ю.О. Моделирование механических свойств наноструктурированных пористых керамик // Деформация и разрушение материалов. - 2012. - № 1. - С. 6-16. doi: 10.1134/S0036029513040083
  20. Eshelby’s inclusion problem in the gradient theory of elasticity. Appli-cations to composite materials / S. Lurie, D. Volkov-Bogorodsky, A. Le¬on¬tiev, E. Aifantis // International Journal of Engineering Science. - 2011. - Vol. 49. - P. 1517-1525. doi: 10.1016/j.ijengsci.2011.05.001
  21. Gusev A.A., Lurie S.A. Strain-gradient elasticity for bridging con-tinuum and atomistic estimates of stiffness of binary Lennard-Jones crystals // Adv. Eng. Mater. - 2010. - Vol. 12. - P. 529-533. doi: 10.1002/adem.201000004
  22. Altan B.S., Aifantis E.C. On the structure of the mode III crack-tip in gradient elasticity. Scripta Met. - 1992. - Vol. 26. - P. 319-324. doi: 10.1016/0956-716X(92)90194-J
  23. Altan B.S., Aifantis E.C. On some aspects in the special theory of gradient elasticity // J. Mech. Behav. Mater. - 1997. - Vol. 8. - No. 3. - P. 231-282. doi: 10.1515/JMBM.1997.8.3.231
  24. Unraveling the Argon Adsorption Processes in MFI-Type Zeolite / E. Garcia-Perez, J.B. Parra, C.O. Ania, D.T. Dubbeldam, J.H. Vlugt, J.M. Castillo, P.J. Merkling, S. Calero // J. Phys. Chem. C. - 2008. - Vol. 112. - No. 27. - P. 9976-9979. doi: 10.1021/j100025a018
  25. Ordered Phases of Cesium in Carbon Nanotubes / W.K. Jeong, J.H. Ho, O.S. Ki, Y.C. Won, R.B. Ki // J. Kor. Phys. Soc. - 2003. - Vol. 43. - No. 4. - P. 534-539.
  26. Flahive P.G., Graham W.R. Pair potential calculations of single atom self-diffusion activation energies // Surface Science. - 1980. - Vol. 91. - P. 449-462. doi: 10.1016/0039-6028(80)90344-1

Statistics

Views

Abstract - 156

PDF (Russian) - 401

Cited-By


PlumX


Copyright (c) 2014 Lurie S.A., Solyaev Y.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies