Investigation of panel flutter of functionally graded circular cylindrical shells

Abstract


The paper is devoted to the analysis of panel flutter of functionally graded cylindrical shells in a supersonic gas flow. The aerodynamic pressure is calculated based on the quasi-static aerodynamic theory. The inner surface of the structure is made of aluminum and the outer surface is made of zirconium dioxide. The effective properties of the material continuously changes through the shell thickness with radial coordinate according to the power law. The geometric and physical relations and the equations of motion written in the framework of the classical shell theory are reduced to the system of eight ordinary differential equations for new unknown quantities. A solution of the problem is found by integrating the obtained system of equations by the Godunov’s orthogonal marching method at each step of the iterative procedure generally used in Muller’s method to evaluate complex eigenvalues. The reliability of the method was assessed by comparing the obtained results with the available experimental and theoretical data. The paper presents the results of numerical experiments carried out to estimate the effect of the properties of functionally graded materials on the stability boundary of circular cylindrical shells for different combinations of boundary conditions and linear dimensions. It has been found that the type of loss of stability is defined not only by geometrical characteristics of the structure and boundary conditions but also by given composition of the functionally graded material. It has been shown that an effective control of critical aerodynamic loading can be executed only for shells with certain geometrical dimensions.

About the authors

S A Bochkarev

Institute of Continuous Media Mechanics, UrB RAS, Perm, Russian Federation

Email: bochkarev@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Ph.D. in Physical and Mathematical Sciences, Senior Researcher, Department of Complex Problems of Mechanics of Deformable Bodies, Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

S V Lekomtsev

Institute of Continuous Media Mechanics, UrB RAS, Perm, Russian Federation

Email: lekomtsev@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Ph.D. in Physical and Mathematical Sciences, Junior Researcher, Department of Complex Problems of Mechanics of Deformable Bodies, Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

References

  1. Reddy J.N., Chin C.D. Thermomechanical analysis of functionally graded cylinders and plates // J. Therm. Stresses. - 1998. - Vol. 21. - No. 6. - P. 593-626.
  2. Sheng G.G., Wang X. Thermomechanical vibration analysis of a functionally graded shell with flowing fluid // Eur. J. Mech. A-Solid. - 2008. - Vol. 27. - No. 6. - P. 1075-1087.
  3. Iqbal Z., Naeem M.N., Sultana N. Vibration characteristics of FGM circular cylindrical shells using wave propagation approach // Acta Mech. - 2009. - Vol. 208. - No. 3-4. - P. 237-248.
  4. Naeem M.N., Arshad S.H., Sharma C.B. The Ritz formulation applied to the study of the vibration frequency characteristics of functionally graded circular cylindrical shells // Proc. Inst. Mech. Engng., Part C: J. Mech. Engng. Sci. - 2010. - Vol. 224. - No. 1. - P. 43-54.
  5. Buckling of functionally graded cylindrical shells under combined loads / H. Huang, Q. Han, N. Feng, X. Fan // Mech. Adv. Mater. Struct. - 2011. - Vol. 18. - No. 5. - P. 337-346.
  6. Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach / Z. Iqbal, M.N. Naeem, N. Sultana, S.H. Arshad, A.G. Shah // Appl. Math. Mech. - 2009. - Vol. 30. - No. 11. - P. 1393-1404.
  7. Khazaeinejad P., Najafizadeh M.M. Mechanical buckling of cylindrical shells with varying material properties // Proc. Inst. Mech. Engng., Part C: J. Mech. Engng. Sci. - 2010. - Vol. 224. - No. 8. - P. 1551-1557.
  8. Matsunaga H. Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory // Compos. Struct. - 2009. - Vol. 88. - No. 4. - P. 519-531.
  9. Najafizadeh M.M., Hasani A., Khazaeinejad P. Mechanical stability of functionally graded stiffened cylindrical shells // Appl. Math. Model. - 2009. - Vol. 33. - No. 2. - P. 1151-1157.
  10. On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression / P. Khazaeinejad, M.M. Najafizadeh, J. Jenabi, M.R. Isvandzibaei // J. Press. Ves. Technol. - 2010. - Vol. 132. - No. 6. - 064501 (6 p.).
  11. Bagherizadeh E., Kiani Y., Eslami M.R. Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation // Compos. Struct. - 2011. - Vol. 93. - No. 11. - P. 3063-3071.
  12. Sheng G.G., Wang X. Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads // Compos. Struct. - 2010. - Vol. 93. - No. 1. - P. 162-170.
  13. Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method / Y. Heydarpour, P. Malekzadeh, M.R. Golbahar Haghighi, M.Vaghefi // Acta Mech. - 2012. - Vol. 223. - No. 1. - P. 81-93.
  14. Malekzadeh P., Heydarpour Y. Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment // Compos. Struct. - 2012. - Vol. 94. - No. 9. - P. 2971-2981.
  15. Hosseini-Hashemi Sh., Ilkhani M.R., Fadaee M. Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell // Int. J. Mech. Sci. - 2013. - Vol. 76. - P. 9-20.
  16. Qu Y., Long X., Yuan G., Meng G. A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions // Compos. Part B-Eng. - 2013. - Vol. 50. - P. 381-402.
  17. Haddadpour H., Mahmoudkhani S., Navazi H.M. Supersonic flutter prediction of functionally graded cylindrical shells // Compos. Struct. - 2008. - Vol. 83. - No. 4. - P. 391-398.
  18. Sabri F., Lakis A.A. Aerothermoelastic stability of functionally graded circular cylindrical shells // ASME International Symposium on Fluid-Structure Interactions, Flow-Sound interactions, and Flow Induced Vibration & Noise, Montreal, Canada, August 2010. - Montreal, 2010. - P. 939-945.
  19. Voss H.M. The effect of an external supersonic flow on the vibration characteristics of thin cylindrical shells // J. Aerospase Sci. - 1961. - Vol. 3. - P. 945-956.
  20. Бочкарёв С.А., Матвеенко В.П. Решение задачи о панельном флаттере оболочечных конструкций методом конечных элементов // Математическое моделирование. - 2002. - Т. 14, № 12. - С. 55-71.
  21. Статика и динамика тонкостенных оболочечных конструкций / А.В. Кармишин, В.А. Лясковец, В.И. Мяченков, А.Н. Фролов. - М.: Машиностроение, 1975. - 376 с.
  22. Годунов С.К. О численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений // Успехи математических наук. -1961. - Т. 16, № 3. - С. 171-174.
  23. Бочкарёв С.А., Матвеенко В.П. Об одном методе исследования аэроупругой устойчивости оболочек вращения // Вестник СамГУ. Естественно-научная серия. - 2007. - № 4(54). - C. 387-399.
  24. Olson M.D., Fung Y.C. Supersonic flutter of circular cylindrical shells subjected to internal pressure and axial compression // AIAA J. - 1966. - Vol. 4. - No. 5. - P. 858-864.
  25. Olson M.D., Fung Y.C. Comparing theory and experiment for the supersonic flutter of circular cylindrical shells // AIAA J. - 1967. - Vol. 5. - No. 10. - P. 1849-1856.
  26. Carter L.L., Stearman R.O. Some aspects of cylindrical shell panel flutter // AIAA J. - 1968. - Vol. 6. - No. 1. - P. 37-43.
  27. Bismarck-Nasr M.N. Finite element method applied to the supersonic flutter of circular cylindrical shells // Int. J. Numer. Meth. Engng. - 1976. - Vol. 10. - No. 2. - P. 423-435.
  28. Ganapathi M., Varadan T.K., Jijen J. Field-consistent element applied to flutter analysis of circular cylindrical shells // J. Sound Vib. - 1994. - Vol. 171. - No. 4. - P. 509-527.
  29. Sabri F., Lakis A.A. Finite element method applied to supersonic flutter of circular cylindrical shells // AIAA J. - 2010. - Vol. 48. - No. 1 - P. 73-81.

Statistics

Views

Abstract - 162

Cited-By


PlumX


Copyright (c) 2014 Bochkarev S.A., Lekomtsev S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies