Mathematical models of growth deformation


Currently biology and medicine become one of the most attractive areas of applied mathematics. To fix certain pathologies of children, growth modelling for living tissue and growth management are the issues of major importance. In the process of growth a growing body itself experiences deformation that proves a fundamental difference of mechanics of growing bodies from the classical mechanics of bodies of constant composition. This paper presents an analysis of publications related to various models of the mechanism of living tissues growth and a brief analysis of biological growth concept. The authors considered basic principles of growth modelling and specified major areas for developing certain models of body-growing tissue. The following classification of growth models for living tissue has been given: models based on the hypothesis about the influence of intracellular pressure on tissue growth as a stimulating factor; models of multiphase media, the so-called “mixture theory”; model based on the hypothesis about the influence of residual stresses on tissue growth as a stimulating factor; models connecting the rate of growth from the deformations known from observations and experiments. The analysis resulted in specifying factors influencing the growth of living tissue. These are the chemical composition, concentration, transport and stresses in the material body. Stress is a significant factor affecting growth. The practical importance of growth model for mechanical deformation is based on its wide application for describing normal and pathological growth of hard tissues in the human body. In this case, from mechanical point of view, it becomes possible to model and control growth.

About the authors

O Y Dolganova

Perm National Research Polytechnic University, Perm, Russian Federation

29, Komsomolsky av., 614990, Perm, Russian Federation Doctoral Student of Department of Theoretical Mechanics, Perm National Research Polytechnic University

V A Lokhov

Perm National Research Polytechnic University, Perm, Russian Federation

29, Komsomolsky av., 614990, Perm, Russian Federation Ph.D. in Physics and Mathematics Sciences, Department of Theoretical Mechanics, Perm National Research Polytechnic University


  1. Ambrosi D., Vitale G. The theory of mixtures for growth and remodeling compression // Mini-Workshop: The mathematics of growth and remodelling of soft biological tissues. - 2008. - No. 39 - P. 9-10.
  2. Ateshian G.A. The role of mass balance equations in growth mechanics illustrated in surface and volume dissolutions // Journal of Biomechanics Engineering. - 2011 - Vol. 133. - No. 1 - P. 381-390.
  3. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage / G.A. Ateshian, N.O. Chahine, I.M. Basalo, C.T. Hung // Journal of Biomechanics. - 2004. - Vol. 37. - No. 3 - P. 391-400.
  4. Chuong C.J., Fung Y.C. On residual stresses in arteries // Journal of Biomechanical Engineering. - 1986. - Vol. 108. - P. 189-192.
  5. Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation / A. Delfino, N. Stergiopulos, J.E. Moore, J.J. Meister // Journal of Biomechanics. - 1997. - Vol. 30. - No. 8 - P. 777-786.
  6. Elastic growth models / A. Goriely, M. Robertson-Tessi, M. Tabor, R. Vandiver // Program in Applied Mathematics. RUMMBA, University of Arizona, 2010. - 45 p.
  7. Experimental Investigation of the Distribution of Residual Strains in the Artery Wall / S.E. Greenwald, J.E. Moore, A. Rachev, T.P.C. Kane, J.J. Meister // Transactions of the ASME. Journal of Biomechanical Engineering. - 1997. - Vol. 119 - P. 438-444.
  8. Hoger A. Residual Stress in an Elastic Body: a Theory for Small Strains and Arbitrary Rotations // Journal of Elasticity. - 1993. - Vol. 31 - P. 1-24.
  9. Hsu F. The influence of mechanical loads on the form of a growing elastic body // Journal of Biomechanics. - 1968. - Vol. 1. - No. 4. - P. 303-311.
  10. Klarbring A., Olsson T., Stalhad J. Theory of residual stresses with application to an arterial geometry // Arch. Mech. - 2007. - Vol. 59. - No. 4 - P. 341-364.
  11. Lanyon L.E., Magee Р.Т., Baggott D.G. The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius // J. Biomech. - 1979. - Vol. 12. - No. 8 - P. 593-600.
  12. Lockhart J.A. An analysis of irreversible plant cell elongation // J. Theoretical Biology. - 1965. - Vol. 8. - No. 2 - P. 264-275.
  13. Lubarda A., Hoger A. On the mechanics of solids with a growing mass // International Journal of Solids Structure. - 2002. - Vol. 39.
  14. Mura T. Micromechanics of Defects in Solids. - Dordrecht: Kluwer Academic Publ, 1991.
  15. Rodriguez E.K., Hoger A., McCulloch A.D. Stress-dependent finite growth in soft elastic tissues // Journal Biomech. - 1994. - Vol. 27. - No. 4 - P. 455-467.
  16. Taber L.A., Eggers D.W. Theoretical Study of Stress-Modulated Growth in the Aorta // Journal of Theoretical Biology. - 1996. - Vol. 180. - P. 343-357.
  17. Кизилова Н.Н., Логвенков С.А., Штейн А.А. Математическое моделирование транспортно-ростовых процессов в многофазных биологических сплошных средах // Механика жидкости и газа. - 2012. - № 1 - С. 3-13.
  18. Логвенков С.А., Штейн А.А. Управление биологическим ростом как задача механики // Российский журнал биомеханики. - 2006. - Т. 10, № 2. - С. 9-19.
  19. Лохов В.А., Долганова О.Ю. Алгоритм поиска оптимальных усилий для лечения двусторонней расщелины твердого неба // Российский журнал биомеханики. - 2012. -Т. 16, № 3 (57). - С. 42-56.
  20. Лычев С.А. Краевые задачи механики растущих тел и тонкостенных конструкций: автореф. дис.. д-ра физ.-мат. наук. - М., 2012. - 32 с.
  21. Масич А.Г. Математическое моделирование ортопедического лечения врожденной расщелины твердого неба у детей: дис.. канд. физ.-мат. наук. - Пермь, 2000. - 132 с.
  22. Регирер С.А., Штейн А.А. Методы механики сплошной среды в применении к задачам роста и развития биологических тканей // Современные проблемы биомеханики. - 1985. - Т. 2 - C. 5-67.
  23. Штейн А.А., Юдина Е.Н. Математическая модель растущей растительной ткани как трехфазной деформируемой среды // Российский журнал биомеханики - 2011. - Т. 15, № 1 - С. 42-51.



Abstract - 17



Copyright (c) 2014 Dolganova O.Y., Lokhov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies