NUMERICAL SIMULATION OF OSCILLATORY PROCESSES IN A MODEL CHANNEL WITH TWO PARTITIONS FILLED WITH HYDROGEN

Abstract


This article discusses the propagation of a sound wave in a channel with a rectangular cross-section with two fiberglass partitions. The time dependences of pressure and displacements for points located in different parts of the model channel are obtained. Hydrogen and air are considered as the working media. An algorithm has been developed for solving the boundary value problem of the numerical simulation of oscillatory processes in the model’s channel with a rectangular cross-section, taking into account the bidirectional interaction (2-way Fluid-Structure Interaction or 2FSI reduction) between deformable partitions and the flow of the working environment, using the ANSYS engineering analysis system. A mathematical model corresponding to the boundary value problem has been developed. Initial and boundary conditions are set and control points along the length of the model channel and on fiberglass partitions are selected. The main results of the study are presented in the form of dependences of the amplitude of displacement of the partition and pressure in the working media (air or hydrogen) on time at characteristic points of the channel. It was found that transients in air and hydrogen differ in amplitude and frequency of oscillation; the dependence of the influence of the number of partitions on fluctuations in the gaseous medium was found. The considered system can become a model for working out the conditions for the occurrence of self-oscillations for different working environments. Predicting the behavior of the pipeline structure, in a model representation, under the influence of different gases during transportation will allow us to assess the influence of the transported medium on the acoustic characteristics of the system. The study is highly important for finding areas of noise reduction during the transportation of any gas mixtures through pipelines.

Full Text

Акустические волны могут эффективно распространяться как в газовой среде, так и через материалы конструкции, такие как сталь, пластик и т.д. [1]. Физико-механические характеристики этих материалов определяют скорость распространения акустических волн, их амплитуду и частотные характеристики. Выбор материала конструкции трубопровода влияет на уровень шума, создаваемого в процессе транспортировки газа. При соударении акустических волн с материалом происходит гашение звука, которое зависит от физико-механических характеристик материала и количества препятствий на пути движения звуковой волны. В рамках энергетической стратегии ЭС-2035 Российской Федерации особое внимание уделяется транспортировке и хранению водорода и водородосодержащих газовых смесей. Этот сегмент является одним из важнейших в плане обеспечения устойчивого развития отрасли и диверсификации источников энергии [1-10]. Транспортировка и хранение водорода играют существенную роль в будущем энергетического развития России. Развитие этого направления позволит не только диверсифицировать источники энергии, но и сделать значительный вклад в обеспечение экологической устойчивости страны. Ключевыми задачами остаются совершенствование технологий транспортировки, построение необходимой инфраструктуры и создание благоприятного климата для развития водородной энергетики. Шум, возникающий при движении газа через трубопроводы, не только негативно влияет на окружающую среду, но также может оказывать вредное воздействие на здоровье человека и животных. Уровень шума зависит от множества факторов, включая диаметр трубопровода, скорость потока газа, давление и температуру, а также материалы, используемые в конструкции [11-12]. В связи с этим, в работе затрагиваются вопросы, связанные с шумом, возникающим при транспортировке водорода. Так, рассматриваются процессы, связанные с возникновением и распространением акустической волны в трубопроводе в условиях транспортировки водорода. Моделирование акустических процессов зачастую связано с источниками их возникновения и распространения в моделируемой рабочей среде. Ряд авторов определяет акустические характеристики на установке «канал с потоком» [13-29]. При этом не учитывается возникновение возможных резонансных явлений и/или процессов ослабления акустических волн в динамической системе «газ-конструкция». Для возможности учета данных процессов необходимо рассматривать краевую задачу в полной постановке, как 2FSI связанную задачу взаимовлияния деформируемой конструкции и газодинамического потока (англ. 2-way Fluid-Structure Interaction), т.е. в аэроупругой постановке, как, например, было сделано в работах [30-32].

About the authors

M. A Seregina

Perm National Research Polytechnic University, Perm, Russian Federation

V. Ya Modorskii

Perm National Research Polytechnic University, Perm, Russian Federation

I. E Cherepanov

Perm National Research Polytechnic University, Perm, Russian Federation

A. V Babushkina

Perm National Research Polytechnic University, Perm, Russian Federation

References

  1. Yakubson K. I. Prospects for the production and use of hydrogen as one of the directions for the development of a low-carbon economy in the Russian Federation (review) // Journal of Applied Chemistry. 2020. T. 93. No. 12. pp. 1675-1695
  2. Kolbantseva D. et al. Analysis of technologies for hydrogen consumption, transition and storage at operating thermal power plants // Energies. 2022. Т. 15. №. 10. p. 3671
  3. Marin G. E. et al. Simulation of the operation of a gas turbine installation of a thermal power plant with a hydrogen fuel production system // International Journal of Hydrogen Energy. – 2023. Т. 48. №. 12. pp. 4543-4550
  4. Bayramov A. N. Comprehensive assessment of system efficiency and competitiveness of nuclear power plants in combination with hydrogen complex // International Journal of Hydrogen Energy. 2023. Vol. 48. Issue 70. pp. 27068-27078
  5. Zvereva E. R. et al. Development of “green” hydrogen energy in the European part of the Russian Federation // Economics of Industry / Russian Journal of Industrial Economics. 2022. T. 15. No. 2. pp. 167-176
  6. Ivanova E. E. et al. Analiz optimalʹnykh sposobov transportirovki vodoroda [Analysis of optimum methods for transporting hydrogen] // Science and technology: Prospects for development and application. 2023. pp. 28-45
  7. Golub V.V., Ivanov K.V. Experimental study of diffusion seuton-ignition of hydrogen in a channel // Chemical Physics. 2009. T. 28. No. 5. pp. 19-26
  8. Volodin V.V., Golub V.V., Elyanov A.E. Influence of acoustic vibrations on the speed of a cellular hydrogen-air flame in a horizontal channel // Technical Physics Letters. 2022. T. 48. No. 9. p. 41
  9. Karasevich V., Valery B., Mingaleeva R. Perspektivy ispolʹzovaniy prirodnogo gaza dly proizvodstva i ėksporta rossiiskogo vodoroda [Prospects for the use of natural gas for production and export of russian hydrogen] // Energy Policy. 2023. No. 6 (184). pp. 90-99
  10. Karasevich V. A., Rudenko S. Yu., Kortikov A. V. Tekushchee sostoiynie i potential ispolʹzovaniiy prirodnogo gaza dly proizvodstva i ėksporta vodorodosoderzhashchei produktcii [Current state and potential of use of natural gas for production and export of hydrogen-containing products] // Issues of economics and management of the oil and gas complex. 2022. pp. 160-165
  11. Ismagilova V. S., Chekushina T. V. Transportation of pipeline and liquefied natural gas: comparative analysis of advantages and disadvantages // Earth Sciences and Subsoil Use. – 2023. T. 46. No. 1 (82). pp. 61-71
  12. Darsaliya N. M., Farukhshina R. R., Saddik Z. E. Transportation of hydrogen by main gas pipelines as a methane-hydrogen mixture // Liquid and Gaseous Energy Resources. 2023. Vol. 3. Issue 1. 6 p
  13. Anoshkin A. N. et al. Raschetno-ėksperimentalʹnye issledovaniy rezonansnykh mnogosloinykh zvukopogloshchaiushchikh konstrukttcii [Calculation and experimental studies of resonant multilayer sound-absorbing structures] // Bulletin of the Perm National Research Polytechnic University. Mechanics. 2015. No. 1. pp. 5-20
  14. Bielak G. W., Premo J. W., Hersh A. S. Advanced turbofan duct liner concepts. 1999. №. NASA/CR-1999-209002
  15. Zakharov A.G. et al. Akusticheskie rezonansnye kharakteristiki dvukh i trekhsloinykh sotovykh zvukopogloshchaushchikh panelei [Acoustic resonance characteristics of two- and three-layer cellular sound-absorbing panels] // Bulletin of the Perm National Research Polytechnic University. Aerospace engineering. 2016. No. 3 (46). pp. 144-159
  16. Khaletskiy Y., Pochkin Y., Igolkin A. Acoustic response of a fan duct liner including porous material // 20th International Congress on Sound and Vibration 2013, ICSV 2013. 2013. pp. 341-348
  17. Karstadt S., Matyschok B., Pelz P. F. Sound deadening on fans // Turbo Expo: Power for Land, Sea, and Air. 2011. Т. 54679. pp. 961-971
  18. Peg F. Sound absorption of a porous material with a perforated facing at high sound pressure levels // Journal of Sound and Vibration. 2018. Т. 425. pp. 1-20
  19. Jones M., Watson W., Parrott T. Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow // 11th AIAA/CEAS Aeroacoustics Conference. 2005. p. 2853
  20. Ch. V., Surya Narayana Reddi, Chandramouli Padmanabhan. Simplified impedance models for Helmholtz resonator with intrusions // ICSV20. Bangkok. Thailand. July 2013. pp. 158–161
  21. Farshidianfar M. H., Farshidianfar A. Mode count and modal density of acoustical cavities: bars, plates and cylindrical shells // ICSV20. 2013. pp. 172-175
  22. Hynninen A., Abom M. Determination of in-duct sound power beyond the plane wave range using wall-mounted microphones // Applied Acoustics. 2015. Т. 99. pp. 24-30
  23. Gao K. et al. Localization of broadband acoustical sources in the cylindrical duct via measurements outside the duct end // Journal of Sound and Vibration. 2023. p. 117749
  24. Etchebarne B. et al. Modal deconvolution of baffled duct internal acoustics from external measurements and experimental evaluation // ICSV29-29th International Congress on Sound and Vibration. 2023
  25. Laly Z., Feng X., Atalla N. An experimental transfer matrix method to characterize acoustic materials at high sound pressure levels in airflow environment //Applied Acoustics. 2023. Т. 206. p. 109311
  26. Shuldeshov E. M., Kraev I. D., Obraztsova E. P. Materialy dlia zvukopogloshchaiushchikh konstruktsiĭ aviatsionnykh dvigateleĭ (obzor) [Materials for sound-absorbing structures of aircraft engines (review)] // Proceedings of VIAM. 2021. No. 7 (101). pp. 59-72
  27. Antipov A. A. et al. Chislennoe modelirovanie zadachi ustoĭchivosti perforirovannykh obolochek [Numerical modeling of the problem of stability of perforated shells] // Bulletin of the Perm National Research Polytechnic University. Mechanics. 2015. No. 1. pp. 21-30
  28. Filippenko G.V., Zinovieva T.V. Modalʹnyi analiz truby, povrezhdennoi vodorodom, kak neodnorodnoi po tolshchine obolochki [Modal analysis of a pipe damaged by hydrogen as a heterogeneous shell thickness] // Bulletin of the Perm National Research Polytechnic University. Mechanics. 2022. No. 3. pp. 170-182
  29. Hilko A.I. et al. Issledovanie kogerentnosti akusticheskikh polei vysokochastotnykh shumovykh istochnikov v sluchaĭno-neodnorodnom okeane [Investigation of the coherence of acoustic fields of high-frequency noise sources in a randomly inhomogeneous ocean] // Acoustic. 2018. Т. 64. No. 2. – pp. 217-227
  30. Modorsky V.Ya. et al. Chislennoe modelirovanie stupeni tsentrobezhnogo kompressora gazoperekachivaiushchego agregata v 2FSI-postanovke [Numerical modeling of the centrifugal compressor stage of a gas pumping unit in 2FSI- production] // Bulletin of PNIPU. Aerospace technology. 2019. No. 56. pp.83-91
  31. Kalyulin S. L. et al. Chislennoe modelirovanie gazodinamicheskikh i prochnostnykh kharakteristik ventiliatora dlia ėksperimentalʹnoi ustanovki po issledovaniiu razrusheniia lʹda na vrashchaiushchikhsia rabochikh lopatkakh [Numerical simulation of gas dynamic and strength characteristics of a fan for an experimental installation for studying ice destruction on rotating working blades] // Bulletin of the Perm National Research Polytechnic University. Mechanics. 2023. No. 1. pp. 134-141
  32. Modorsky V. Ya. et al. Chislennoe modelirovanie protsessov vzaimovliianiia volny vozmushcheniia v vodorode i peregorodki v modelʹnom kanale [Numerical simulation of the processes of interaction between a perturbation wave in hydrogen and a partition in a model channel] // Bulletin of the Perm National Research Polytechnic University. Mechanics. 2023. No. 6. pp. 68-77
  33. Seregina M. A. et al. Chislennoe modelirovanie protsessov vzaimovliianiia volny gaza i deformirovannoi pregrady v modelʹnom kanale aviatsionnogo dvigatelia [Numerical simulation of the processes of interaction of a gas wave and a deformed obstacle in a model channel of an aircraft engine] // Bulletin of the Perm National Research Polytechnic University. Aerospace engineering. 2022. No. 69. pp. 92-9

Statistics

Views

Abstract - 3

PDF (Russian) - 2

Cited-By


PlumX


Copyright (c) 2024 Seregina M.A., Modorskii V.Y., Cherepanov I.E., Babushkina A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies