The Effect of Preliminary Plastic Hardening by Tension on the Cylindrical Shells Buckling during Torsion

Abstract


The results of the experimental and numerical analysis of the processes of elastoplastic deformation and loss of stability of tubular specimens from 12Kh18N10T steel under monotonic simple and complex kinematic loading by tensile-torsion are presented taking into account large deformations and non-uniformity of the stress-deformed state. The experimental studies were carried out on a modernized (in the standard version- only tension-compression plus alternating torsion) test complex Z100 ZWICK-ROEL, which allows performing tests for complex loading on tubular samples with simultaneous, synchronized setting of the parameters in the quasistatic loading range: the rate of the longitudinal force change (displacement), the rate of the torque change (angle of twist), the rate of the internal pressure change. Numerical modelling of the samples elastoplastic deformation and loss of stability was carried out in Lagrangian variables. Kinematic relations are formulated in speeds in the metric of the current state, which makes it possible to describe large form changes. The elastoplastic properties of the material are described by the flow theory with nonlinear isotropic hardening. The equation of motion is written in a fixed Cartesian coordinate system and follows from the equation of the balance of virtual powers. The system of equations, supplemented by kinematic boundary and initial conditions, is solved by the finite element method in combination with an explicit integration scheme of a cross type. There is a good agreement of the numerical results with the experimental ones on the residual shape of the samples and the integral characteristics of the deformation process (axial force from axial displacement and torque from the angle of twist). The analysis of the mutual influence of stretching and torsion on the loss of stability of the cylindrical shells has been carried out.

Full Text

Введение Для оценки прочности ответственных конструкций в штатных режимах эксплуатации и аварийных ситуациях необходимы математические модели описания нестационарного поведения оболочечных элементов при комбинированных нагружениях растяжением, сжатием, кручением, внутренним (внешним) давлением как на устойчивой стадии деформирования, так и на закритической. Необходимо учитывать немалые докритические деформации. При достижении критических значений параметров нагружения процесс упругопластического деформирования оболочек вращения из осесимметричного переходит в неосесимметричный. При этом возникает сложное нагружение. Одним из вариантов реализации сложного напряженно-деформированного состояния (НДС) при комбинированном нагружении в экспериментальной практике является растяжение с кручением. При испытаниях тонкостенных образцов кручением происходит потеря устойчивости цилиндрической формы задолго до разрушения. Определение деформационных характеристик материалов при кручении и больших деформациях на основе метода «условной тонкостенной трубки» описано в [1, 2]. Следует отметить, что этот метод неприменим при развитии неоднородного НДС вдоль оси образца. В ряде работ исследуются процессы деформирования и потери устойчивости тонких упругих оболочек при кручении и последовательном нагружении растяжением (сжатием)-кручением [3-8]. Кручение тонких оболочек с R/h > 100 приводит к выпучиванию оболочки с образованием регулярно распределенных по окружности винтообразных гофров. Для оболочек большой длины число волн становится равным двум, т.е. сечение приобретает форму эллипса. Разработаны также модели деформирования слоистых оболочек при кручении [9]. В работах [10-12] проведены исследования упругопластического деформирования трубчатых образцов при сложном нагружении (кручении), однородном НДС и малых деформациях. Работы [13-17] посвящены численным решениям осесимметричных геометрически нелинейных упругопластических задач деформирования и устойчивости оболочек при квазистатических и динамических нагружениях. В этих публикациях в основном рассматриваются решения задач с малыми деформациями и немалыми перемещениями. В [18-23] представлены экспериментальные данные и численные исследования осесимметричных (с кручением) процессов деформирования и потери устойчивости цилиндрических тел при конечных деформациях и комбинациях нагружений (растяжение, кручение, внутреннее давление). В вышеперечисленных работах практически не рассмотрено влияние приобретенной ранее деформационной анизотропии на критические нагрузки при кручении. Численный анализ неосесимметричных упругопластических процессов выпучивания осесимметричных оболочек, основанный на методе конечных элементов в трехмерной постановке, является достаточно трудоемким и недостаточно эффективным без выделения больших вращений оболочки как квазижесткого целого, особенно при использовании производной Яуманна. В широко распространенных коммерческих расчетных программах, как правило, реализованы только классические модели неупругого поведения материала, а возможность решения осесимметричных задач доступна лишь при отсутствии кручения. Эти недостатки можно преодолеть в задачах о больших деформациях кручения введением для описания НДС местной вращающейся лабораторной системы координат. При этом выбор эффективной модели конечного элемента и параметров дискретизации тонкостенных конструкций является нетривиальной задачей [24]. Экспериментальным исследованиям процессов деформирования упругопластических оболочек при комбинированных квазистатических нагружениях посвящены работы [12, 13, 25-27]. В Тверском государственном техническом университете разработан автоматизированный испытательный комплекс СН-ЭВМ на сложное трехпараметрическое нагружение и пластическое деформирование конструкционных материалов при деформациях до 3 % [27]. В Сибирском отделении Академии наук разработана установка на сложное нагружение, предназначенная для испытаний тонкостенных трубчатых образцов при одновременном действии растягивающей силы и крутящего момента до потери устойчивости при умеренных деформациях (менее 12 %) [13]. В Центре экспериментальной механики Пермского национального исследовательского политехнического университета используется двухосевая сервогидравлическая испытательная система Instron 8850 и цифровая оптическая система анализа полей перемещений и деформаций Vic-3D [25]. Испытательная система позволяет выполнять эксперименты на одноосное растяжение, кручение и совместное растяжение с кручением в условиях пропорционального и сложного нагружения. В [26] приведено описание установки для испытаний тонкостенных трубчатых образцов в условиях плоского и объемного напряженных состояний, обеспечивающей мягкое нагружение внутренним или внешним давлением и осевой силой при давлении рабочей жидкости до 1000 МПа. В Исследовательском центре проблем энергетики Федерального государственного бюджетного учреждения науки Казанского научного центра РАН имеется установка Bi-00-701 Axial-Torsion Test System, на которой возможна реализация осевых сил, крутящего момента, внутреннего давления, а также их различных комбинаций [12]. В настоящей работе на экспериментальном оборудовании НИИ механики ННГУ выполнены исследования процессов упругопластического деформирования трубчатых образцов из стали 12Х18Н10Т при монотонном последовательном кинематическом осесимметричном нагружении внутренним давлением-растяжением-сжатием с кручением до потери устойчивости. Экспериментально и численно изучено влияние деформационной анизотропии, вызванной предварительным растяжением, на критические параметры и потерю устойчивости цилиндрических оболочек при кручении. Результаты подобных исследований при больших деформациях и неоднородном НДС являются новыми. 1. Экспериментальное оборудование и образцы Модернизированный (в стандартном исполнении - только растяжение-сжатие плюс знакопеременное кручение) испытательный комплекс Z100 ZWICK-ROEL позволяет проводить эксперименты на сложное нагружение на трубчатых образцах при одновременном, синхронизированном во времени, задании параметров в квазистатическом диапазоне нагружения: скорость изменения продольной силы (перемещения), скорость изменения крутящего момента (угла закручивания), скорость изменения внутреннего давления. Предельные значения параметров: по силе ± 100кН, по крутящему моменту ± 1000 Нм, по давлению 0-480 бар (48 МПа). Измерительная аппаратура комплекса включает в себя измеритель поперечных деформаций на базе видеоэкстензометра ME46 с разрешающей способностью 0,4-2 мкм, лазерный экстензометр Laser Xtens, позволяющий одновременно измерять как продольные деформации (база измерения 20-100 мм) с разрешающей способностью ≤ 1 мкм, так и деформации при кручении, класс точности 1 по ISO 9513, датчик силы 0-250 кН, класс точности 1 по ISO 7500-1. Установка снабжена термокамерой с контроллером, позволяющей проводить испытания образцов различной формы в диапазоне температур от -150 до 600 °С. Общий вид установки приведен на рис. 1. Характерной особенностью конструктивной схемы образца (рис. 2) является плавный переход от рабочей части к захватной, снижающий влияние концентраторов напряжений. Для проведения испытаний в условиях сложного нагружения была разработана специальная форма головок для крепления в захватах испытываемого образца. Рис. 1. Общий вид экспериментальной установки Fig. 1. General view of the experimental setup Рис. 2. Чертеж трубчатого образца Fig. 2. Drawing of the tubular sample 2. Экспериментальные исследования На модернизированном испытательном комплексе Z100 было проведено экспериментальное исследование деформирования металлических трубчатых образцов из стали марки 12Х18Н10Т при комбинированном нагружении растяжением (сжатием), кручением и внутренним давлением. Продольная деформация, поперечная деформация и угол закручивания регистрируются непосредственно на рабочей части образца (база лазерного экстензометра 60 мм), а также по перемещению захватов испытательной машины. Геометрические размеры оболочки: длина рабочей части 92 мм, наружный диаметр 30 мм, внутренний диаметр 28 мм, толщина 1 мм, площадь поперечного сечения 364,24 мм2. Испытания проводились по следующим программам нагружения. Испытание 1. Деформирование цилиндрической оболочки при кручении. Один торец оболочки жестко защемляется, второй - закручивается с постоянной угловой скоростью и свободно перемещается вдоль оси. Испытания 2 и 3. Деформирование цилиндрической оболочки при последовательном нагружении растяжением-кручением. Один торец оболочки жестко защемляется, второй - перемещается с постоянной осевой скоростью до достижения удлинения оболочки 4,0 или 9,62 мм, затем оболочка разгружается, и второй торец закручивается с постоянной угловой скоростью и свободно перемещается вдоль оси. Испытание 4. Деформирование цилиндрической оболочки при пропорциональном нагружении растяжением-кручением. Один торец оболочки остается жестко защемленным, другой - перемещается и закручивается с постоянными осевой и угловой скоростью. Испытания 5 и 6. Деформирование цилиндрической оболочки при различных вариантах нагружения внутренним давлением и кручением до потери устойчивости [28]. Один из торцов жестко защемлен, второй имеет свободное перемещение вдоль оси. Испытание 7. Деформирование цилиндрической оболочки при пропорциональном нагружении сжатием-кручением. Один торец оболочки остается жестко защемленным, другой - перемещается и закручивается с постоянными осевой и угловой скоростью. Формоизменения образцов после испытаний приведены на рис. 3. 7 6 5 4 1 2 3 Рис. 3. Формоизменения образцов после испытаний: 1 - чистое кручение; 2 и 3 - кручение после предварительного растяжения до удлинения 4,0 и 9,62 мм; 4 - пропорциональное нагружение растяжением-кручением; 5 и 6 - сложное нагружение внутренним давлением и кручением; 7 - пропорциональное нагружение сжатием-кручением Fig. 3. Sample shape changes after tests: 1 - pure torsion; 2, 3 - torsion after pre-tension to an elongation of 4.0 mm and 9.62 mm; 4 - proportional loading by tension-torsion; 5, 6 - complex loading by internal pressure and torsion; 7 - proportional loading with compression-torsion 3. Методика численного решения Деформирование оболочки описывается в переменных Лагранжа (текущая лагранжевая формулировка) с позиций механики сплошных сред [29, 30]. Наряду с общим базисом вводится местная (сопутствующая) система координат с направляющими косинусами : (1) (по повторяющимся индексам ведется суммирование). Здесь s - координата, отсчитываемая от срединной поверхности оболочки и нормальная к ней; - ортогональны к . Отметим, что сдвиговые деформации являются малыми, так как потеря устойчивости цилиндрических оболочек происходит при малых сдвиговых деформациях кручения. Компоненты тензора скоростей деформаций в местном вращающемся базисе выражаются через компоненты скорости деформаций в общем базисе (2) которые определяются в метрике текущего состояния. (3) Здесь - перемещения в общей декартовой системе координат ; индекс после запятой означает частную производную по соответствующей пространственной переменной; точка над символом - частную производную по времени . Уравнение движения выводится из баланса виртуальных мощностей [29-30]: (4) где - компоненты вектора скорости перемещения в общей декартовой системе координат ; - компоненты тензоров напряжений Коши; - плотность; - распределенная нагрузка; - исследуемая область; - зона действия внешнего давления; , - вариации , (на поверхности с заданными кинематическими граничными условиями ); точка над символом означает частную производную по времени t; по повторяющимся индексам ведется суммирование. Упругопластическое деформирование материала описывается соотношениями теории течения с нелинейным изотропным упрочнением [31, 32]. Как показали наши исследования [20, 28], учет комбинированного (изотропного и кинематического) упрочнения позволяет точнее описать начало процесса сложного упругопластического деформирования при малых деформациях кручения (εzβ < 1 %). При развитых деформациях кручения расчетные кривые сближаются, так как память материала ограничена областью малых деформаций. Поэтому теория пластичности с изотропным упрочнением применима для оценки предельных состояний оболочек. Полагается: , , , , , , (5) , (6) Здесь , , , - девиаторные и шаровые компоненты тензоров напряжения и скоростей деформаций; - скорости пластических деформаций; , - модули сдвига и объемного сжатия; - символы Кронекера; - поверхность текучести Мизеса; - предел текучести; - параметр Одквиста; - параметр, тождественно равный нулю при упругом деформировании и определяемый при упругопластическом деформировании из условия прохождения мгновенной поверхности текучести через конец вектора догрузки. Для дискретизации определяющей системы уравнений применяются моментная схема метода конечных элементов и явная конечно-разностная схема типа «крест» [33]. Оболочка заменяется лагранжевой сеткой, состоящей из 8-узловых конечных элементов (КЭ). В узлах сетки определяются ускорения , скорости и перемещения в общей системе координат . В каждом конечном элементе вводится локальный базис (1), отслеживающий его вращение как жесткого целого пошаговым пересчетом направляющих косинусов осей [31, 35]. Конечный элемент с помощью полилинейного изопараметрического преобразования отображается на куб : (7) Здесь - координаты узлов в базисах ; - функции формы. Компоненты скорости деформаций в КЭ аппроксимируются линейными функциями (8) где - значения компонент скорости деформаций в центре КЭ (безмоментные составляющие), а - их градиент (моментные составляющие). Чтобы не завышать сдвиговую жесткость элемента, в (8) учитываются только компоненты , соответствующие изгибающим и крутящим моментам в теории оболочек [33]. Интегрирование по пространственным переменным в (1) выполняется с применением квадратурных формул [30]. Напряжения, определенные в локальном базисе конечного элемента, заменяются статически эквивалентными узловыми силами, которые проецируются в общую систему координат. Дискретный аналог уравнений движения записываются в виде , (9) где - диагональная матрица масс; и - векторы, составленные из ускорений узлов КЭ-сетки и результирующих узловых сил в общей системе координат. Система обыкновенных дифференциальных уравнений (9) интегрируется по явной конечно-разностной схеме типа «крест». Изложенная конечно-элементная методика реализована в рамках вычислительной системы (ВС) «Динамика-3»*. Потеря устойчивости оболочки определяется с введением начальных несовершенств формы методом продолжения по параметру, в качестве которого используется время [35]. 4. Результаты численного моделирования. Сравнение с экспериментом Проводилось численное моделирование процессов деформирования и потери устойчивости цилиндрических оболочек из стали 12Х18Н10Т при чистом кручении и кручении после предварительного пластического растяжения (испытания 1-3). Упругие характеристики материала образцов: модуль объемного сжатия МПа, модуль сдвига МПа, предел текучести МПа, плотность кг/м3. Диаграмма деформирования стали 12Х18Н10Т взята из [20]. Один торец оболочки жестко защемлен, другой - закручивался с постоянной угловой скоростью = = 0,3 град/с или перемещался с осевой скоростью =0,5 мм/с. На рис. 4 и 5 приведены зависимости осевой силы от условной осевой деформации оболочки и крутящего момента от условной сдвиговой деформации . Здесь и - начальные значения длины и радиуса срединной поверхности рабочей части. Сплошными линиями обозначены экспериментальные данные, штриховыми - результаты расчета. На рис. 6 представлено формоизменение оболочек при численном моделировании. 2 1 F, kN 3 Рис. 4. Зависимости осевой силы от условной осевой деформации оболочки : кривые 1 - растяжение до кривые 2 - растяжение до сплошные линии - эксперимент, штриховые линии - расчет Fig. 4. Dependences of the axial force on the conditional axial deformation of the shell curves 1 - tension to curves 2 - tension to solid lines - experiment, dashed lines - calculation Рис. 5. Зависимости крутящего момента от условной сдвиговой деформации оболочки кривые 1 - чистое кручение; кривые 2 - кручение после растяжения до кривые 3 - кручение после растяжения до сплошные линии - эксперимент, штриховые линии - расчет Fig. 5. Dependencies of torque on conditional shear deformation of the shell : curves 1 - pure torsion, curves 2 - torsion after stretching to curves 3 - torsion after stretching to solid lines - experiment, dashed lines - calculation Неосесимметричная потеря устойчивости оболочки в расчете и эксперименте наблюдается по второй форме в окружном направлении, т.е. в зоне потери устойчивости поперечное сечение оболочки приобретает форму эллипса. Предварительное растяжение (упрочнение) образца вызывает неосесимметричную потерю устойчивости на более ранней стадии деформирования по сравнению с чистым кручением. Критическое значение условной сдвиговой деформации в испытании по программе (1) составляет 4 %, а в испытаниях по программам (2) и (3) - 1,7 и 1,5 %. Максимальный угол закручивания в экспериментах 1, 2 и 3 составил соответственно 30, 15 и 13°. При этом максимальное значение крутящего момента возрастает на 30 и 35 % соответственно. a в б г Рис. 6. Формоизменение образца: начальная геометрия оболочки (a); оболочка после кручения (б); оболочка после растяжения до (в); оболочка после комбинированного нагружения растяжением , затем кручением (г) Fig. 6. Sample form change: initial shell geometry (a), shell after torsion (b), shell after tension (c), shell after combined loading by tension , then torsion (d) На начальном участке нагружения кручением (испытание 2, ) наблюдается некоторое расхождение экспериментальных и расчетных данных, которое объясняется применением теории пластичности с изотропным упрочнением. Результаты расчетов хорошо согласуются с экспериментальными данными по интегральным характеристикам (зависимость крутящего момента от угла закручивания) и формам образцов после потери устойчивости. Заключение Ранее задачи устойчивости рассматривались как задачи о бифуркации квазистатического равновесного состояния цилиндрической оболочки в рамках малых деформаций. В качестве физических соотношений применялась теория деформаций в вариациях А.А. Ильюшина или варианты общей теории пластичности А.А. Ильюшина, развитые В.Г. Зубчаниновым [36]. Задачи о бифуркации решались на основе теории пологих оболочек [36], область применимости которой ограничена при числе волн в окружном направлении более трех [3], тогда как известно, что неосесимметричное упругопластическое выпучивание происходит с номером преобладающей формы волнообразования n = 2 или n = 3. При этом не принимались во внимание докритические формоизменения, краевые эффекты, моментные составляющие изгибных напряжений и неоднородность НДС. В представленных экспериментах на кручение, пропорциональное и последовательное нагружение растяжением (сжатием) - кручением, внутренним давлением - кручением упругопластическая потеря устойчивости цилиндрических оболочек происходит по второй форме. При одновременном нагружении растяжением или внутренним давлением и кручением потеря устойчивости оболочек происходит при бо́льших степенях деформации, чем при чистом кручении. Применяемый метод численного моделирования позволяет естественным образом описать процессы потери устойчивости упругопластических оболочек с учетом начальных несовершенств формы, краевых, волновых и геометрически нелинейных эффектов. Данный подход позволяет исследовать докритическое деформирование оболочек, определить критические нагрузки и формы потери устойчивости, а также закритическое поведение оболочек.

About the authors

V G Bazhenov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

D V Zhegalov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

D A Kazakov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

A I Kibec

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

E V Nagornykh

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

D A Samsonova

National Research Lobachevsky State University of Nizhni Novgorod

References

  1. Васин Р.А., Ильюшин А.А., Моссаковский П.А. Исследование определяющих соотношений и критериев разрушения на сплошных и толстостенных трубчатых цилиндрических образцах // Изв. РАН. МТТ. - 1994. - № 2. - С. 177-176.
  2. Максак В.И., Дощинский Г.А. Методика и исследование больших пластических деформаций при простом нагружении // Изв. Том. политехн. ин-та. - 1970. - Т. 173, - С. 3-9.
  3. Вольмир А.С. Устойчивость деформируемых систем. - М.: Наука, 1967. - 984 с.
  4. Donnel L.H. Stability of thin-walled tubes under torsion // Report no. 479, NACA, 1933. - 25 p.
  5. Charles K.M., Waas A.M. Torsional buckling of thin-walled cylinders under circumferentially varying thermal loads // 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. - 2004. - Р. 1-9.
  6. Guarracino F., Simonelli M.G. Numerical Evaluation of Plastic Buckling of Short Cylinders Under Combined Loading // International Journal of Structural Stability and Dynamics. - 2018. - Vol. 18. - No. 6 - 1850081 (21 pages). doi: 10.1142/S0219455418500815.
  7. Shakouri M., Sharghi H., Kouchakzadeh M.A. Torsional buckling of generally laminated conical shell // Meccanica. - 2017. - Vol. 52. - Р. 1051-1061. doi: 10.1007/s11012-016-0429-8
  8. Huaiwei Huang, Yongqiang Zhang, Qiang Han. Inelastic Buckling of FGM Cylindrical Shells Subjected to Combined Axial and Torsional Loads // International Journal of Structural Stability and Dynamics. - 2017. - Vol. 17. - No. 9. - Р. 1771010 (13 pages). doi: 10.1142/S0219455417710109
  9. Иванов В.А., Паймушин В.Н., Полякова Т.В. Исследование форм потери устойчивости ортотропной трехслойной цилиндрической оболочки при кручении // Вестн. Нижегород. ун-та им. Н.И. Лобачевского. Сер.: Механика. -2000. - № 2 (2). - С. 136-146.
  10. Ипатова А.В., Вильдеман В.Э. Построение материальных функций неупругого деформирования алюминиевого сплава Д16Т по результатам испытаний на растяжение и кручение // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2012. - Вып. 4(29). - С. 106-114. DOI: https://doi.org/10.14498/vsgtu1106
  11. Шлянников В.Н., Иштыряков И.С. Параметры функций вида напряженного состояния для алюминиевого сплава Д16Т // Тр. Академэнерго. - 2014. - № 4. -С. 51-63.
  12. Шлянников В.Н., Иштыряков И.С., Яруллин Р.Р. Характеристики деформирования сплава Д16Т при совместном нагружении растяжением, сжатием, кручением и внутренним давлением // Тр. Академэнерго. - 2014. - № 3. - С. 78-90.
  13. Аннин Б.Д., Жигалкин В.М. Поведение материалов в условиях сложного нагружения. - Новосибирск: Изд-во СО РАН, 1999. - 341 с.
  14. Выпучивание упругопластических цилиндрических и конических оболочек при осевом ударном нагружении / В.Г. Баженов, М.С. Баранова, А.И. Кибец, В.К. Ломунов, Е.В. Павленкова // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. -2010. - Т. 152, № 4. - С. 86-105.
  15. Баженов В.Г., Ломунов В.К. Устойчивость и закритическое состояние оболочек вращения при осевом ударе // Прикл. мех. - 1986. - Т. 22, № 9. - С. 28-33.
  16. Баженов В.Г., Чекмарев Д.Т. Численные методы решения задач нестационарной динамики тонкостенных конструкций // Изв. РАН. МТТ. - 2001. - № 5. - C. 156-173.
  17. Коробейников С.Н. Численное решение уравнений с особенностями деформирования упругопластических оболочек вращения // Вычисл. технол. - 2001. - Т. 6, № 5. - С. 39-59.
  18. Моделирование неосесимметричного выпучивания упругопластических оболочек вращения при комбинированных осесимметричных нагружениях / А.А. Артемьева, В.Г. Баженов, Е.В. Нагорных, Д.А. Казаков, Т.В. Кузмичева // ПММ. - Т. 81. - Вып. 5. - 2017. - С. 610-622.
  19. Баженов В.Г., Зефиров С.В., Крамарев Л.Н. Моделирование процессов деформирования и локализации пластических деформаций при кручении-растяжении тел вращения // ПММ. - 2008. - Т. 72, № 2. - С. 342-350.
  20. Баженов В.Г., Жегалов Д.В., Павленкова Е.В. Численное и экспериментальное исследование упругопластических процессов растяжения-кручения осесимметричных тел при больших деформациях // Изв. РАН. МТТ. - 2011. - № 2. -C. 57-66.
  21. Experimental characterization of materials subjected to combined loading conditions // L. Andrusca et al. 2016 IOP Conf. Ser.: Mater. Sci. Eng. 147 012092. doi: 10.1088/1757-899X/147/1/012092
  22. Jie LIU, Fuguo LI, Han CHEN. Influences of pre-torsion deformation on microstructure and mechanical properties of pure titanium subjected to subsequent tension deformation // Chinese Journal of Aeronautics. - 2018. - No. 31(4). - P. 837-844. - URL: https://doi.org/10.1016/j.cja.2017.10.009.
  23. Galishin A.Z. Axisymmetric thermoviscoelastoplastic state of thin flexible shells with damages // International Applied Mechanics. - 2008. - Vol. 44. - No. 2. - P. 158-166.
  24. Применение твердотельных конечных элементов в задачах расчета оболочек / С.А. Капустин, Ю.А. Чурилов, В.А. Горохов, А.А. Рябов, В.И. Романов, Д.А. Плакунов // Проблемы прочности и пластичности. - 2017. - № 2. - С. 204-219.
  25. Вильдеман В.Э., Санникова Т.В., Третьяков М.П. Экспериментальное исследование закономерностей деформирования и разрушения материалов при плоском напряженном состоянии // Проблемы машиностроения и надежности машин. - 2010. - № 5. - С. 106-111.
  26. Механические свойства материалов при статическом нагружении трубчатых образцов в условиях плоского и объемного напряженных состояний / А.Ю. Кузькин, Д.В. Латышев, М.Ю. Петров, В.А. Попов // Науч.-техн. ведомости C.-Петерб. гос. политехн. ун-та. - 2014. - № 2 (195). - С. 162-173.
  27. Автоматизированный комплекс для исследования упруговязкопластических свойств материалов при сложном нагружении. Решение о выдаче свидетельства на полезную модель / В.Г. Зубчанинов, А.В. Акимов, Н.Л. Охлопков / ВНИИГПЭ. - М., 1997. - № 97108023/20 (008702).
  28. Теоретический и экспериментальный анализ больших деформаций и предельных состояний упругопластических оболочек вращения при комбинированных сложных нагружениях / А.А. Артемьева, В.Г. Баженов, Д.А. Казаков, А.И. Кибец, Е.В. Нагорных // ПММ. - 2015. - Т. 79. - Вып. 4. - С. 558-570.
  29. Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. - М.: Наука, 1986. - 232 с.
  30. Belytschko T., Liu W.K., Moran B. Nonlinear finite elements for continua and structures. - New York: John Wiley & Sons, 2000. - 600 p.
  31. Качанов Л.М. Основы теории пластичности. - М.: Наука, 1969. - 420 с.
  32. Казаков Д.А., Капустин С.А., Коротких Ю.Г. Моделирование процессов деформирования и разрушения материалов и конструкций. - Н. Новгород: Изд-во Нижегород. гос. ун-та, 1999. - 226 с.
  33. Голованов А.И., Тюленева О.Н., Шигабутдинов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. - М.: Физматлит, 2006. - 391 с.
  34. Коробейников С.Н., Шутов А.В. Выбор отсчетной поверхности в уравнениях пластин и оболочек // Вычислительные технологии. - 2003. - Т. 8, № 6. - С. 38-59.
  35. Шалашилин В.И., Кузнецов Е.Б. Метод продолжения решения по параметру и наилучшая параметризация в прикладной математике и механике. - М.: Эдиториал УРСС, 1999. - 224 с.
  36. Зубчанинов В.Г. Устойчивость и пластичность. Т. 1. Устойчивость. - М.: Физматлит, 2007. - 448 с.

Statistics

Views

Abstract - 283

PDF (Russian) - 199

Cited-By


PlumX


Copyright (c) 2019 Bazhenov V.G., Zhegalov D.V., Kazakov D.A., Kibec A.I., Nagornykh E.V., Samsonova D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies