# Abstract

The paper presents the experimental and numerical results of elastoplastic deformation of specimens with a cylindrical working part and specimens with a stress concentrator made of 09G2C steel under monotonic kinematic tension-torsion loadings prior to failure, taking into account large deformations and inhomogeneity of the stress-strain state (SSS). A complete system of equations describing generalized axisymmetric torsion problems is written in a cylindrical coordinate system. Kinematic relations are formulated at speeds in the metric of the current state, which makes it possible to describe large deformations. The equation of motion of a continuous medium follows from the equation of the balance of virtual capacities. Since we consider active loading processes close to proportional ones, we describe the elastoplastic properties of materials by the flow theory with nonlinear isotropic hardening. The system of equations, supplemented by kinematic boundary and initial conditions, is solved by the finite element method in a combination with an explicit integration scheme of the "cross" type. On the basis of the experimental-calculation method, true deformation diagrams for tension and torsion were constructed to supplement the plasticity model with material functions. These diagrams differ significantly with deformations of more than 15 %, which is caused by the sensitivity of the plastic properties of the test material to the form of the stressed state. To describe the tension-torsion, the dependence of the deformation diagram on the form of the stressed state is introduced. The refined deformation diagram is a linear combination of tension and torsion diagrams, which coefficients depend on the parameter of the form of the stressed state, the parameter of the stress triaxiality or the Nadai-Lode stress parameter. There is a good correspondence of the numerical results with the experiment on the integral characteristics (axial force from axial displacement and torque from the twist angle). The analysis of the SSS parameters in the neck and circular concentrator is performed. The estimated the peculiarities of the mutual influence of tension and torsion on the localization of deformations and destruction of cylindrical samples and samples with a stress concentrator.

# Full Text

### V G Bazhenov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

### D A Kazakov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

### E V Nagornykh

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

### D L Osetrov

Researcher Institute of Mechanics, National Research Lobachevsky State University of Nizhni Novgorod

### A A Ryabov

FGUP RFYAC-VNIIEF

# References

1. Дегтярев В.П. Деформации и разрушение в высокона-пряженных конструкциях. - М.: Машиностроение, 1987. - 105 с.
2. Зубчанинов В.Г. Механика сплошных деформируемых сред. - Тверь: Изд-во ТГТУ: ЧуДо, 2000. - 703 с.
3. Малинин Н.Н. Прикладная теория пластичности и пол-зучести. - М.: Машиностроение, 1975. - 400 с.
4. Механические свойства материалов при статическом нагружении трубчатых образцов в условиях плоского и объ-емного напряженных состояний / А.Ю. Кузькин, Д.В. Латышев, М.Ю. Петров, В.А. Попов // Науч.-техн. ведомости C.-Петерб. гос. политехн. ун-та. - 2014. - № 2 (195). - С. 162-173.
5. Шлянников В.Н., Иштыряков И.С., Яруллин Р.Р. Ха-рактеристики деформирования сплава Д16Т при совместном нагружении растяжением, сжатием, кручением и внутренним давлением // Тр. Академэнерго. - 2014. - № 3. - С. 78-90.
6. Ипатова А.В., Вильдеман В.Э. Построение материаль-ных функций неупругого деформирования алюминиевого спла-ва Д16Т по результатам испытаний на растяжение и кручение // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2012. - № 4 (29). - С. 106-114. DOI: https://DOI.org/10.14498/vsgtu1106
7. Высокоскоростное деформирование и разрушение стали 09Г2С / Вл.Вас. Баландин, Вл.Вл. Баландин, А.М. Брагов, Л.А. Игумнов, А.Ю. Константинов, А.К. Ломунов // Изв. РАН. МТТ. - 2014. - № 6. - С. 78-85.
8. Моделирование процессов деформирования и локали-зации пластических деформаций при кручении-растяжении тел вращения / В.Г. Баженов, С.В. Зефиров, Л.Н. Крамарев, Е.В. Павленкова // ПММ. - 2008. - Т. 72. - Вып. 2. - С. 342-350.
9. Бердин В.К., Кашаев Р.М. Об определении напряжен-ного состояния при растяжении с кручением сплошного ци-линдра // Проблемы прочности. - 2001. - № 1. - С. 28-37.
10. Бондарь В.С., Даншин В.В. Пластичность. Непро-порциональные нагружения. - М.: Изд-во МГТУ «МАМИ», 2008. - 218 с.
11. Дощинский Г.А., Максак В.И. О деформации простой сдвиг // Изв. Том. политехн. ин-та. - 1970. - Т. 173. - С. 13-17.
12. Максак В.И., Дощинский Г.А. Методика и исследо-вание больших пластических деформаций при простом нагру-жении // Изв. Том. политехн. ин-та. - 1970. - Т. 173. - С. 3-9.
13. Шлянников В.Н., Иштыряков И.С. Параметры функ-ций вида напряженного состояния для алюминиевого сплава Д16Т // Тр. Академэнерго. - 2014. - № 4. - С. 51-63.
14. Ломакин Е.В., Мельников А.М. Задачи плоского на-пряженного состояния тел с вырезами, пластические свойства которых зависят от вида напряженного состояния // Изв. РАН. МТТ. - 2011. - № 1. - С. 77-89.
15. Ломакин Е.В., Мельников А.М. Пластическое плос-кое напряженное состояние тел, свойства которых зависят от вида напряженного состояния // Вычислительная механика сплошных сред. - 2009. - Т. 2, № 2. - С. 48-64.
16. Ломакин Е.В. Зависимость предельного состояния композитных и полимерных материалов от вида напряженного состояния // Мех. композит. материалов. - 1988. - № 1. - С. 3-9.
17. Соотношения модели поврежденной среды для мате-риалов, подвергающихся терморадиационным воздействиям / С.А. Ка¬пустин, В.А. Горохов, О.Ю. Виленский, В.Б. Кайдалов, А.А. Руин // Проблемы прочности и пластичности. - 2012. - № 74. - С. 5-15.
18. Капустин С.А., Чурилов Ю.А., Горохов В.А. Моде-лирование нелинейного деформирования и разрушения конст-рукций в условиях многофакторных воздействий на основе МКЭ: монография. - Н. Новгород: Изд-во Нижегород. гос. ун-та им. Н.И. Лобачевского, 2015. - 347 с.
19. Бондарь В.С., Абашев Д.Р. Пластическое деформи-рование материалов, чувствительных к виду напряженного состояния // Вестник Пермского национального исследова-тельского политехнического университета. Механика. - 2018. - № 1. - С. 29-39. doi: 10.15593/perm.mech/2018.1.03.
20. Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. - М.: Физ-матлит, 2008. - 424 с.
21. Tekoğlu C, Hutchinson JW, Pardoen T. 2015 On locali-zation and void coalescence as a precursor to ductile fracture. Phil. Trans. R. Soc. A 373. doi: 10.1098/rsta.2014.0121.
22. Nahshon K., Hutchinson J.W. Modification of the Gur¬son Model for shear failure // European Journal of Mechanics A/Solids. - 2008. - Vol. 27. - P. 1-17. doi: 10.1016/j.euromechsol.2007.08.002
23. Kossakowski P.G. Experimental determination of the void volume fraction for s235jr steel at failure in the range of high stress triaxialities // Arch. Metall. Mater. - 2017. - Vol. 62. - No. 1. - P. 167-172. doi: 10.1515/amm-2017-0023
24. Modeling of Ductile Failure in High Strength Steel / N. Her¬zig, S. Abdel-Malek, L.W. Meyera, S.J. Cimpoeru // Procedia Engineering. 2017. - Vol. 197. - Р. 285-293. doi: 10.1016/j.proeng.2017.08.106
25. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities / X Chen, Y Peng, S Peng, S Yao, C Chen, P Xu // PLoS ONE. - 2017. - Vol. 12(7): e0181983. https://DOI.org/10.1371/journal.pone.0181983
26. Ломакин Е.В. Механика сред с зависящими от вида напряженного состояния свойствами // Физ. мезомеханика. - 2007. - № 10 (5). - С. 41-52.
27. Calibration procedures for a computational model of ductile fracture / Z. Xue, M.G. Pontin, F.W. Zok, John W. Hutchinson // Engineering Fracture Mechanics. - 2009. - Vol. 77(3). - P. 492-509. doi: 10.1016/j.engfracmech.2009.10.007
28. Nielsen K.L., John W. Hutchinson. 2012. Cohesive trac-tion-separation laws for tearing of ductile metal plates // Interna-tional Journal of Impact Engineering. - 2011. - Vol. 48. - P. 15-23. doi: 10.1016/j.ijimpeng.2011.02.009
29. Писаренко Г.С., Лебедев А.А. Деформирование и проч¬ность материалов при сложном напряженном состоянии. - Киев: Наукова думка, 1976. - 416 с.
30. Коробейников С.Н. Нелинейное деформирование твердых тел. - Новосибирск: Изд-во СО РАН, 2000. - 262 с.
31. Экспериментально-теоретическое исследование пре-дельных состояний упругопластических стержней различного поперечного сечения при растяжении / В.Г. Баженов, А.И. Кибец, П.В. Лаптев, С.Л. Осетров // Проблемы механики: сб. ст. к 90-летию со дня рождения А.И. Ишлинского / под ред. Д.М. Климова и др. - М.: Физматлит, 2003. - С. 116-123.
32. Баженов В.Г., Жегалов Д.В., Павленкова Е.В. Чис-ленное и экспериментальное исследование упругопластических процессов растяжения-кручения осесимметричных тел при больших деформациях // Изв. РАН. МТТ. - 2011. - № 2. - С. 57-66.

# Statistics

#### Views

Abstract - 192

PDF (Russian) - 142

#### PlumX

Copyright (c) 2018 Bazhenov V.G., Kazakov D.A., Nagornykh E.V., Osetrov D.L., Ryabov A.A.