# Abstract

The paper examines general shells supported from the incurvity side by a cross-sectional ribbing directed parallel to coordinate lines. Ribs’ position on a shell is set using ordinary bar graph functions so that the rib and shell contact is arranged along the strip. A mean shell surface shall be considered as a coordinate surface. Geometrical nonlinearity and transverse shears are considered; and the shell is considered to be shallow. Forces are expressed via stress function in the mid-surface of the shell in such a way that the first two equilibrium equations are fulfilled identically. Shell deformation is expressed via this function. Introduction of ribs by means of ordinary bar graph functions does not cause difficulties for expression of deformations using forces with the consequent insertion to moments, since ordinary bar graph functions may be also used in denominator, this is not applicable for delta-function (when positions of narrow ribs are set using delta-functions). Mixed equations are established starting from the minimum of shell energy deformation functional. At that, except for equilibrium equations, the variational procedure allows obtaining the third equation of strain compatibility in a shell mid-surface for ribbed shells too. Curvature and torsion change functions are registered in the same way as for Kirchhoff-Love model considering transverse shears. Mixed form equations are given for ribbed shells of the general form and for the Kirchhoff-Love model. For ribbed shallow shells, an algorithm for their solution has been developed and the results of calculating their stability for a different number of reinforcing ribs are given.

# Full Text

Введение Оболочечные конструкции применяются в различных областях промышленности [1-5], и математическое моделирование процесса их деформирования является актуальной задачей. В ряде случаев в качестве математической модели деформирования оболочки используются уравнения в смешанной форме. Например, в строительстве для оболочек покрытия большепролетных строительных сооружений, чтобы избежать концентрации напряжений вблизи контура и особенно в угловых точках оболочки, используется шарнирно-подвижное закрепление контура. При таких краевых условиях подобрать аппроксимирующие функции для уравнений в перемещениях, являющихся основными уравнениями теории оболочек, сложно. Сложностей не возникает в том случае, если использовать уравнения, содержащие одну функцию перемещений (прогиб) и функцию напряжений в срединной поверхности оболочки, а при учете поперечных сдвигов - еще и две функции углов поворота нормали. По форме уравнений - это уравнения в смешанной форме (содержат функцию перемещения и функцию напряжения). Такое условное название закрепилось за этими уравнениями в теории оболочек (понятие уравнений теории оболочек в смешанной форме встречается, например, в работах В.З. Власова, О.И. Теребушко, Э.И. Григолюка и В.В. Кабанова). Эти уравнения, как и уравнения в перемещениях, являются уравнениями эллиптического типа и не имеют ничего общего с уравнениями, которые в математической литературе принято называть уравнениями смешанного типа - они на одной части области являются гиперболическими, а на другой - эллиптическими (например, уравнения Ф. Трикоми). В начале 60-х годов, с появлением ЭВМ, начинается исследование устойчивости оболочек с учетом геометрической нелинейности. Для пологих оболочек прямоугольного плана исследования проводились лишь преимущественно на основе уравнений в смешанной форме ([6-8] и др.), которые до сих пор используются достаточно часто [2, 9-16]. В основном рассматривались оболочки постоянной толщины, для которых уравнения в смешанной форме были получены В. З. Власовым [6]. Уравнения в смешанной форме для ребристых оболочек, когда контакт ребер и обшивки происходит по полосе, рассматриваются, например, в работе Б.А. Антуфьева, С.Б. Антуфьева и В.Н. Сергеева [17]. Таким же образом ребра вводятся и в работах М.А. Мехтиева [18], Y.-W. Kim и Y.-S. Lee [19] и др. Уравнения в смешанной форме выводятся только для пологих оболочек, тем не менее они находят большое применение в строительстве, так как для таких уравнений легко подобрать аппроксимирующие функции при шарнирно-подвижном закреплении контура оболочки. Такая форма закрепления позволяет избежать концентрации напряжений вблизи контура оболочки, но для нее трудно подобрать аппроксимирующие функции при использовании уравнений в перемещениях. Математическая модель процесса деформирования оболочечных конструкций, основанная на уравнениях в смешанной форме, также использовалась в работах [20-27], в которых уравнения в смешанной форме получены из третьего уравнения равновесия и уравнения совместности деформаций. В некоторых из них вводятся ребра по методу размазывания жесткости [21, 22, 24]. В данной работе основная научная новизна заключается в выводе вариационным методом уравнения совместности деформаций для оболочек, подкрепленных дискретно расположенными ребрами, что позволяет получать корректные уравнения в смешанной форме для ребристых оболочек. Уравнения в смешанной форме выводятся для оболочек произвольного вида (но пологих), подкрепленных ребрами жесткости, которые вводятся дискретно с учетом сдвиговой и крутильной жесткости. Обычно для вывода этих уравнений (в случае использования модели Кирхгофа-Лява) используются третье уравнение равновесия и одно из уравнений совместности деформаций в срединной поверхности оболочки. Уравнения совместности деформаций для оболочек общего вида впервые были получены А.Л. Гольденвейзером [28] путем составления условий Гаусса-Кодацци для деформированной срединной поверхности. Целью данной работы является вывод уравнений в смешанной форме для ребристых оболочечных конструкций, применяемых в строительстве вариационным методом (из условий минимума полного функционала энергии), и обоснование третьего уравнения совместности деформаций в срединной поверхности для ребристых оболочек. Будем учитывать поперечные сдвиги (модель Тимошенко-Рейснера). Также приводятся уравнения в смешанной форме для ребристых оболочек (модель Кирхгофа-Лява). Для этой модели разработан алгоритм решения задач устойчивости и проведены расчеты нескольких вариантов конструкций. 1. Вывод уравнений в смешанной форме для ребристых оболочечных конструкций Рассматриваются тонкостенные оболочечные конструкции общего вида, подкрепленные со стороны вогнутости ребрами жесткости, параллельными координатным линиям. Срединная поверхность обшивки толщиной принимается за координатную поверхность. Оси и ортогональной системы координат направлены по линиям главных кривизн оболочки, ось - ортогонально координатной поверхности в сторону вогнутости (рис. 1). Оболочка находится под действием механических нагрузок вдоль координат . Выведем уравнения в смешанной форме для изотропных оболочек, подкрепленных ребрами жесткости. Для этого вводится некоторая функция напряжений в срединной поверхности по определенному правилу так, чтобы первые два уравнения равновесия выполнялись тождественно. Так как рассматриваются ребристые оболочки, то будем учитывать поперечные сдвиги, но будем считать, что где - неизвестные функции перемещений; - главные кривизны оболочки вдоль осей и ; - параметры Ляме. Также считаем, что оболочка является пологой или разбивается в процессе деформации на пологие участки. Рис. 1. Схематичное изображение подкрепленной оболочки Fig. 1. Schematic representation of a ribbed shell Для пологой оболочки считается, что в процессе деформирования функция является быстро изменяющейся функцией. Кроме того, считается, что параметры Ляме ее координатной поверхности в пределах рассматриваемой области мало изменяются [1]. Обычно для вывода уравнений в смешанной форме используется третье уравнение совместности деформаций в срединной поверхности оболочки. Для эксцентрично подкрепленных оболочек срединная поверхность отсутствует. За координатную поверхность принимается срединная поверхность обшивки. Жесткостные характеристики ребер - площадь поперечного сечения ребер, статический момент и момент инерции этого сечения приводятся к координатной поверхности. В этом случае желательно проверить, сохраняет ли прежний вид третье уравнение совместности деформаций. Уравнения равновесия для рассматриваемых оболочек будут иметь вид [16] (1) Усилия и моменты, приходящиеся на единицу длины сечения и приведенные к срединной поверхности обшивки, которая принимается за координатную поверхность, принимают вид (2) Здесь - модуль упругости и коэффициент Пуассона материала оболочки и ребер; - функции, характеризующие площадь поперечного или продольного сечения ребер, приходящуюся на единицу длины сечения, статический момент и момент инерции этого сечения, которые в развернутом виде определяются выражениями [16] где, например, Здесь - высота и ширина ребер, параллельных оси , и число ребер этого направления; - аналогично для ребер, параллельных оси ; - единичная столбчатая функция, равная единице при и равная нулю при других значениях - единичная столбчатая функция, равная единице при и равная нулю при других значениях ( ). Рис. 2. Графики единичных функций (а) и единичной столбчатой функции (б) Fig. 2. Graphs of unit functions (а) and unit column functions (b) Единичные столбчатые функции и введены автором для удобства задания ступенчато-переменной толщины оболочки (ребра, накладки и вырезы) и представляют собой разность двух единичных функций , . На рис. 2 представлены графики единичных функций и единичной столбчатой функции. Высота и места расположения ребер задаются функцией с помощью этих функций [16]: Третий член этого соотношения означает, что общая часть пересечения ребер, которая была уже учтена в первых двух членах, вычитается. В этом случае контакт ребра и обшивки происходит по полосе, и ребра при пересечении считаются жестко закрепленными между собой. Если в оболочке имеются сквозные вырезы, то их наличие задается функцией Введение единичных столбчатых функций позволяет [29]: - при выводе уравнений равновесия из условий минимума функционала полной потенциальной энергии деформации оболочки, преобразовывая по-разному вариационное уравнение, получить краевые условия на боковой поверхности ребер (на краю вырезов) - свободный край. Для оболочек с вырезами это позволяет получить краевую задачу для односвязной области, когда краевые условия на краю выреза выполняются автоматически при решении краевой задачи; - предельным переходом от единичных столбчатых функций к дельта-функциям можно получить как частный случай соотношения для ребристых оболочек, введенных первоначально В.З. Власовым и А.И. Лурье, когда контакт обшивки и ребер происходит по линии, и при пересечении ребра не считаются жестко закрепленными между собой. Считаем, что оболочка допускает прогибы, соизмеримые с ее толщиной. В этом случае деформации в срединной поверхности обшивки выражаются через перемещения по формулам (3) Деформации в точках, расположенных на расстоянии от координатной поверхности, выражаются соотношениями Здесь функции изменения кривизн и кручения принимают вид (4) Кроме того, обозначим (5) Существуют три уравнения, связывающие деформации между собой и носящие название уравнений совместности деформаций (эти уравнения выражают собой условия Кодацци-Гаусса). Запишем одно из этих уравнений, которое в дальнейшем будет нужно: (6) Здесь имеют вид (5). Введем функцию напряжений связанную с усилиями зависимостями (7) Если в первых двух уравнениях (1) считать и подставить в них зависимости (7), то эти уравнения удовлетворяются тождественно. Выразим из соотношений (2) с учетом (7) деформации через функции и . Итак, имеем (8) Здесь для краткости через обозначены правые части выражений (7). Теперь из (8) получим (9) где Подставив найденные выражения деформаций (9) в моменты (2), получим (10) Здесь Уравнения в смешанной форме можно получить из условия минимума полного функционала [30], который может быть записан в виде (11) Здесь - деформации, выраженные через перемещения (3), а - деформации, выраженные через усилия (9); - деформации, связанные с изгибом и кручением (4). Находя первую вариацию функционала (11) и приравнивая ее к нулю, получим (12) Преобразуем вариационное уравнение таким образом, чтобы под знаком двойного интеграла не было вариаций от производных функций . В результате получим Сомножители при и в двойном интеграле должны равняться нулю, а это 1-е и 2-е уравнения равновесия. Проведем некоторый анализ полученного вариационного уравнения. Выражения в одномерных интегралах преобразованы с учетом (9). Заметим, что и - это одни и те же деформации, только имеющие разные выражения, так что Поэтому в одномерных интегралах сомножители при будут тождественно равны нулю. Теперь исследуем сомножитель в двойном интеграле при Подчеркнутое одной чертой выражение можно записать в виде Если в него подставить выражение деформаций через перемещения (3), то члены, содержащие и , взаимно сократятся, и оно примет вид Подчеркнутое двумя чертами выражение, стоящее сомножителем при в двойном интеграле, можно преобразовать: (13) Неподчеркнутое выражение, стоящее сомножителем при в двойном интеграле, представляет собой тоже выражение (14), когда вместо подставлены их выражения (9). Таким образом, сомножитель при в двойном интеграле примет вид Так как сомножитель перед в двойном интеграле должен обращаться в ноль, то получаем третье уравнение совместности деформаций в срединной поверхности для ребристых оболочек, которое имеет тот же вид, что и для гладких оболочек. Заметим, что в этом уравнении при учете поперечных сдвигов имеют вид (5). Таким образом, уравнения в смешанной форме имеют вид При шарнирно подвижном закреплении должны выполняться следующие краевые условия: при при Кроме рассмотренного выше представляет интерес вариант уравнений в смешанной форме, основанный на гипотезах Кирхгофа-Лява. Если материал оболочки и ребер упругий и изотропный, то усилия и моменты будут иметь вид (2) при Считаем также, что оболочка допускает прогибы, соизмеримые с ее толщиной. В этом случае деформации срединной поверхности выражаются через перемещения по формулам (3). Деформации в точках, расположенных на расстоянии от координатной поверхности, выражаются соотношениями Здесь функции изменения кривизн и кручения принимают вид (14) Уравнения равновесия оболочек ступенчато-переменной толщины при некоторых допущениях имеют вид (модель Кирхгофа-Лява) (15) Введем функцию напряжений связанную с усилиями зависимостями (7). Если считать компоненты нагрузки и подставить зависимости (7) в первые два уравнения (15), то эти уравнения удовлетворяются тождественно. Третье уравнение (15) после подстановки в него вместо усилий их выражения через функцию (7), а вместо моментов - их выражения через функции и , дает одно из уравнений в смешанной форме. Выразим из соотношений (2) с учетом (7) деформации через функции и . Теперь из (8) получим (16) где и ранее были подробно описаны. Подставив найденные выражения деформаций (16) в моменты (2), получим (10). Здесь описаны ранее. Теперь, подставив (7) и (10) в третье уравнение (15), получим (17) Второе уравнение можно получить, если выражения для деформаций (16) подставить в уравнение совместности деформаций (6) (18) Система уравнений (17), (18) - система уравнений в смешанной форме для оболочек ступенчато-переменной толщины, в которых учитывается геометрическая нелинейность, дискретное размещение ребер, их ширина, сдвиговая и крутильная жесткость ребер. Данная система может применяться для расчетов подкрепленных оболочек разной формы (например, оболочек двоякой кривизны, цилиндрических, конических, тороидальных панелей и др.). Вид исследуемой конструкции задается с помощью значений параметров Ляме и главных кривизн . 2. Пологие оболочки, подкрепленные ребрами жесткости Для пологих оболочек прямоугольного плана, подкрепленных ребрами жесткости, уравнения в смешанной форме примут вид : (19) Здесь После соответствующих преобразований получим (20) Здесь Аналогично записывают производные от . Имеют место соотношения где - дельта-функции. Уравнение в смешанной форме применяется при шарнирно-подвижном закреплении контура. Предполагается, что оболочка по криволинейным кромкам свободна оперта, а в плоскости перемещения свободны в направлениях, нормальных кромкам. В этом случае, например, при поэтому должно быть Функция вдоль оси y не должна меняться, поэтому и, следовательно, Таким образом, при должны выполняться условия Следовательно, при заданных краевых условиях угловые точки оказываются закрепленными, а остальные точки контура могут перемещаться только в направлениях, перпендикулярных к контуру в плоскости (рис. 3). Рис. 3. Пологая оболочка, шарнирно-подвижно закрепленная по контуру Fig. 3. A shallow shell, hingedly and movably fixed along the contour Для решения уравнений (20) применяем метод Бубнова-Галеркина, при этом (21) где - неизвестные числовые параметры; - известные аппроксимирующие функции, а именно синусы нечетных аргументов по соответствующей координате для симметричной задачи. Подставив (21) в (20), получим (22) Здесь Теперь нужно полученные соотношения (22) умножить на аппроксимирующие функции проинтегрировать в пределах и приравнять к нулю. В результате получили нелинейную систему алгебраических уравнений, которая после введения обозначения примет вид (23) Здесь коэффициенты представлены в Прил. 1. Система уравнений (23) - это система нелинейных алгебраических уравнений, которую кратко можно записать в виде (24) где - функция от нагрузки Для решения этой системы можно применить метод продолжения решения по параметру [31, 32]. Если за параметр продолжения решения принять нагрузку то после дифференцирования уравнения (24) по параметру получим Это дифференциальное уравнение нужно решать при начальном условии Применив метод Эйлера для решения этой начальной задачи, получим линеаризированное уравнение (25) На первом этапе нагружения На i-м этапе нагружения Таким образом, на каждом этапе нагружения решается начальная задача с накопленными к этому этапу значениями Для системы уравнений (23) линеаризированные уравнения (25) будут иметь вид (26) На первом этапе нагружения уравнения примут вид . После решения этого уравнения получим значения . Таким образом, становится возможным вычислить значения для следующего этапа нагружения: На втором этапе система уравнений будет иметь вид Отсюда получим На i-м этапе система уравнений будет иметь вид Теперь, после решения этой системы, получим Таким образом, находим последовательно значения функций до нагрузки, соответствующей потере устойчивости оболочки (при этой нагрузке процесс расходится). Для обхода критических точек графика «нагрузка - прогиб » (рис. 4) можно применить следующий прием. Задается значение приращения прогиба в центре оболочки при например , и вычисляется на i-м этапе нагружения: Рис. 4. Кривая «нагрузка - прогиб» пологой оболочки Fig. 4. The "load-deflection" curve of the shallow shell Это значение должно равняться . Так как решается линейная задача, то умножаем на значение и умножаем на И таким образом поступаем на каждом этапе нагружения. Методика определения значения критической нагрузки заключается в следующем. При исследовании устойчивости строится график зависимости «нагрузка - прогиб» в некоторой точке оболочки, например в ее центре. Анализируются особые точки этого графика, соответствующие экстремумам кривой. При этих нагрузках «хлопком» происходит переход на новое равновесное состояние. По сути дела для нахождения критических нагрузок применяется критерий Ляпунова, когда малому изменению входного параметра (нагрузки) соответствует существенное изменение выходного параметра (прогиба). 3. Расчеты устойчивости пологих ребристых оболочек В качестве примера применения описанного алгоритма для исследования устойчивости оболочек, шарнирно подвижно закрепленных по контуру, рассмотрим пологую оболочку с параметрами МПа, подкрепленную различным набором регулярно расставленных ребер шириной 2h и высотой 3h. Чтобы можно было сравнивать результаты расчета с результатами работы [8], расчеты проведем в первом приближении (N = 1). На рис. 5 представлены графики «нагрузка-прогиб» оболочки в центре (кривая 1, красный цвет) и в четверти (кривая 2, синий цвет) для оболочки постоянной толщины. При этом критическая нагрузка МПа, что совпадает с результатами работы [8]. На рис. 6 представлены аналогичные результаты для оболочки, подкрепленной четырьмя ребрами (по два ребра в каждом направлении). Здесь критическая нагрузка составила МПа. В таблице представлены критические нагрузки для рассматриваемой оболочки, подкрепленной различным набором ортогональных ребер. Также приводятся данные, полученные для шарнирно-неподвижно закрепленной оболочки при использовании модели в перемещениях. Критические нагрузки для рассматриваемой оболочки, подкрепленной различным набором ортогональных ребер Critical loads for the shell under consideration supported by a various set of orthogonal ribs Критические нагрузки Число ребер 0 2 18 36 При использовании модели в смешанной форме и шарнирно-подвижном закреплении контура , МПа 0,62 0,74 1,25 1,8 Повышение , % - 19 101 190 При использовании модели в перемещениях и шарнирно-неподвижном закреплении контура , МПа 1,16 1,33 - - Повышение , % - 14 - - При увеличении числа ребер, подкрепляющих оболочку, критическая нагрузка существенно возрастает. Рис. 5. Кривая «нагрузка - прогиб» пологой оболочки без ребер Fig. 5. The "load - deflection" curve of the shallow shell without ribs Рис. 6. Кривая «нагрузка - прогиб» пологой оболочки с 4 ребрами Fig. 6. The "load - deflection" curve of the shallow shell with 4 ribs Заключение Таким образом, вариационный метод позволяет получить уравнения в смешанной форме для подкрепленных оболочек произвольного вида с учетом поперечных сдвигов и естественные краевые условия. Единственное ограничение - оболочки должны быть пологими и находиться только под действием поперечной нагрузки. Для эксцентрично подкрепленных ребрами жесткости оболочек нейтральная поверхность отсутствует, поэтому жесткостные характеристики ребер приведены к срединной поверхности обшивки, которая принимается за координатную поверхность. Для ребристых оболочек в соотношениях усилий и моментов появляется дополнительное слагаемое (в отличие от гладких оболочек), учитывающее взаимное влияние тангенциальных и изгибных деформаций срединной поверхности обшивки. Введение ребер с помощью единичных столбчатых функций, когда контакт ребер и обшивки происходит по полосе, не вызывает затруднений при выражении деформаций через усилия и последующей подстановке их в моменты, так как единичные столбчатые функции могут быть в знаменателе. Кроме уравнений равновесия, вариационный метод позволяет получить третье уравнение совместности деформаций в срединной поверхности обшивки и для ребристых оболочек. В этом уравнении функции изменения кривизн и кручения должны быть такими же, как и для модели Кирхгофа-Лява, несмотря на то, что учитываются поперечные сдвиги. Проведенное исследование устойчивости ребристых пологих оболочек прямоугольного плана при шарнирно подвижном закреплении контура показало, что наличие ребер существенно увеличивает критическую нагрузку. Рассматриваемая оболочка, но при шарнирно-неподвижном закреплении по контуру (при использовании уравнений в перемещениях) становится более жесткой и при некотором числе подкрепляющих оболочку ребер перестает терять устойчивость.

### V V Karpov

Saint Petersburg State University of Architecture and Civil Engineering

# References

1. Сухинин С.Н. Прикладные задачи устойчивости многослойных композитных оболочек. - М.: Физматлит, 2010. - 248 с.
2. Shen H.-S., Yang D.-Q. Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators // Ocean Engineering. - 2014. - Vol. 80. - P. 36-49. doi: 10.1016/j.oceaneng.2014.01.016
3. Solovei N.A., Krivenko O.P., Malygina O.A. Finite element models for the analysis of nonlinear deformation of shells stepwise-variable thickness with holes, channels and cavities // Magazine of Civil Engineering. - 2015. - Vol. 53. - No. 1. - С. 56-69. doi: 10.5862/MCE.53.6
4. Yu W., Li Z.L. Structural similitude for prestressed vibration and buckling of eccentrically stiffened circular cylindrical panels and shells by energy approach // International Journal of Structural Stability and Dynamics. - 2016. - Vol. 16. - No. 10. - P. 1550074. doi: 10.1142/S0219455415500741
5. Бакусов П.А., Семенов А.А. Устойчивость сегментов тороидальных оболочек при изменении угла отклонения от вертикальной оси // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2017. - № 3. - С. 17-36. doi: 10.15593/perm.mech/2017.3.02
6. Власов В.З. Общая теория оболочек и ее приложение в технике. - М.; Л.: Гостехиздат, 1949. - 784 с.
7. Петров В.В. Метод последовательных нагружений в нелинейной теории пластинок и оболочек. - Саратов: Изд-во Сарат. ун-та, 1975. - 119 с.
8. Крысько В.А. Нелинейная статика и динамика неоднородных оболочек. - Саратов: Изд-во Сарат. ун-та, 1976. - 216 с.
9. Reddy J.N. Canonical relationships between bending solutions of classical and shear deformation beam and plate theories // Annals of Solid and Structural Mechanics. - 2010. - Vol. 1. - No. 1. - P. 9-27. doi: 10.1007/s12356-009-0002-4
10. Никитин К.Е., Ступишин Л.Ю., Ватанин А.Н. Расчет ребристых оболочек в рамках геометрически нелинейной теории методом конечных элементов в смешанной формулировке // Изв. Юго-Зап. гос. ун-та. Сер.: Техника и технологии. - 2012. - № 2(2). - С. 27-30.
11. Коломоец А.А., Модин А.С. Устойчивость равновесных состояний цилиндрической оболочки при действии неравномерного внешнего давления // Изв. вузов. Строительство. - 2014. - № 1. - С. 13-17.
12. Спасская М.В., Трещев А.А. Термоупругое деформирование цилиндрической оболочки из анизотропного разносопротивляющегося материала // Вестник ЧГПУ им. И.Я. Яковлева. Сер.: Механика предельного состояния. - 2015. - № 1 (23). - С. 65-74.
13. Zhang J., Campen van D.H. Stability and bifurcation of doubly curved shallow panels under quasi-static uniform load // International Journal of Non-Linear Mechanics. - 2003. - Vol. 38. - No. 4. - P. 457-466. doi: 10.1016/S0020-7462(01)00069-5
14. Semi-analytical stability analysis of doubly-curved orthotropic shallow panels - considering the effects of boundary conditions / D.H. van Campen [et al.] // International Journal of Non-Linear Mechanics. - 2002. - Vol. 37. - No. 4-5. - P. 659-667. doi: 10.1016/S0020-7462(01)00090-7
15. Seffen K.A. ‘Morphing’ bistable orthotropic elliptical shallow shells // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 2007. - Vol. 463. - No. 2077. - P. 67-83. doi: 10.1098/rspa.2006.1750
16. Карпов В.В. Прочность и устойчивость подкрепленных оболочек вращения: в 2 ч. Ч. 1. Модели и алгоритмы исследования прочности и устойчивости подкрепленных оболочек вращения. - М.: Физматлит, 2010. - 288 с.
17. Антуфьев Б.А., Антуфьев С.Б., Сергеев В.Н. Свободные колебания цилиндрической оболочки, дискретно подкреплённой системой стрингеров // Изв. вузов. Авиационная техника. - 2000. - № 1. - С. 54-56.
18. Мехтиев М. А. Нелинейные параметрические колебания подкрепленной цилиндрической оболочки с вязкоупругим заполнителем // Механика машин, механизмов и материалов. - 2011. - № 3(16). - С. 28-30.
19. Kim Y.-W., Lee Y.-S. Transient analysis of ring-stiffened composite cylindrical shells with both edges clamped // Journal of Sound and Vibration. - 2002. - Vol. 252. - No. 1. - P. 1-17. doi: 10.1006/jsvi.2001.4020
20. Librescu L., Chang M.-Y. Imperfection sensitivity and postbuckling behavior of shear-deformable composite doubly-curved shallow panels // International Journal of Solids and Structures. - 1992. - Vol. 29. - No. 9. - P. 1065-1083. doi: 10.1016/0020-7683(92)90136-H
21. Dung D.V., Dong D.T. Post-buckling analysis of functionally graded doubly curved shallow shells reinforced by FGM stiffeners with temperature-dependent material and stiffener properties based on TSDT // Mechanics Research Communications. - 2016. - Vol. 78. - P. 28-41. doi: 10.1016/j.mechrescom.2016.09.008.
22. Jaunky N., Knight N.F., Ambur D.R. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels // Composites Part B: Engineering. - 1996. - Vol. 27. - No. 5. - P. 519-526. doi: 10.1016/1359-8368(96)00032-7
23. Brauns J., Skadins U. Semi-analytical postbuckling strength analysis of anisotropic shell structures // IOP Conference Series: Materials Science and Engineering. - 2017. - Vol. 251. - P. 012096. doi: 10.1088/1757-899X/251/1/012096
24. Bich D.H., Ninh D.G. Research on dynamical buckling of imperfect stiffened three-layered toroidal shell segments containing fluid under mechanical loads // Acta Mechanica. - 2017. - Vol. 228. - No. 2. - P. 711-730. doi: 10.1007/s00707-016-1724-0
25. Krysko V.A., Awrejcewicz J., Saveleva N.E. Stability, bifurcation and chaos of closed flexible cylindrical shells // International Journal of Mechanical Sciences. - 2008. - Vol. 50. - No. 2. - P. 247-274. doi: 10.1016/j.ijmecsci.2007.07.006
26. Dey T., Ramachandra L.S. Dynamic stability of simply supported composite cylindrical shells under partial axial loading // Journal of Sound and Vibration. - 2015. - Vol. 353. - P. 272-291. doi: 10.1016/j.jsv.2015.05.021
27. Dynamic Stability of Doubly Curved Orthotropic Shallow Shells Under Impact / J. Zhang [et al.] // AIAA Journal. - 2001. - Vol. 39. - No. 5. - P. 956-961. doi: 10.2514/2.1401
28. Гольденвейзер А.Л. Уравнения теории оболочек // Прикладная математика и механика. - 1940. - № 2.
29. Karpov V.V. Models of the shells having ribs, reinforcement plates and cutouts // International Journal of Solids and Structures. - 2018. - Vol. 146. - P. 117-135. doi: 10.1016/j.ijsolstr.2018.03.024
30. Абовский Н.П., Андреев Н.П., Деруга А.П. Вариационные принципы теории упругости и теории оболочек. - М.: Наука, 1978. - 228 с.
31. Кузнецов Е.Б. Продолжение решения в многопараметрических задачах приближения кривых и поверхностей // Журн. вычисл. матем. и матем. физ. - 2012. - Vol. 52. - № 8. - С. 1457-1471. doi: 10.1134/S0965542512080076
32. Шалашилин В.И., Кузнецов Е.Б. Метод продолжения решения по параметру и наилучшая параметризация (в прикладной математике и механике). - М.: Эдиториал УРСС, 1999. - 224 с.

# Statistics

#### Views

Abstract - 268

PDF (Russian) - 73