EXPERIMENTAL STUDY OF FIBER-REINFORCED PLASTICS IN A BROAD RANGE OF STRAIN RATES

Abstract


The paper presents a review of testing fiber-reinforced plastics for strength and elasticity characteristics at high strain rates. Particular attention is paid to strain rate ranges covered, conformity of stress state to the expected one, and validity of failure mode. The review is presented in an “approach, configuration, method” paradigm, where the configuration means geometry of the specimen and auxiliary equipment, the approach is either to create a simple configuration with a complex stress state (non-classical approach), or a complex configuration providing a homogeneous stress state (classical approach). Finally, the method is a combination of configuration and test facilities. This narration logic allows us to systematize a large number of experimental methods and outline the ways of their further development. In addition, the paper presents original methods and results of the tests carried out by the authors. These methods add to a collection of experimental techniques and expand the range of strain rates covered. In particular, the strain rate range for tensile tests of unidirectional carbon fiber-reinforced plastics along fibers is significantly extended by applying the configuration of a wound ring specimen, in the methods of ring expansion (strain rates of the order of 5×102 s-1 are obtained) and exploding wire (strain rates of 1.5×104 s 1 are obtained). The range of strain rates for tension transverse to fibers was also extended by plate impact tests. In the experiment, strength values of 45 and 55 MPa were obtained for a tensile strain rate of 1.5×104 s 1, which is two and a half times higher than the strength in static experiments.

Full Text

Определение влияния скорости деформации на механическое поведение полимерных композиционных материалов (ПКМ) требуется для проектирования энергопоглощающих систем и конструкций для нужд авиации [1, 2, 3], автомобильной техники [4, 5], проектирования сосудов, работающих под давлением [6] и элементов защиты [7], устойчивых к высокоскоростным столкновениям. Для создания таких систем используются гибридные [8] и традиционные композиты [9, 10] на полимерной основе, а также металло-композиты [11]. Современный инженерный подход к созданию таких систем и конструкций подразумевает, что в начале поведение конструкции моделируется, а потом проводятся натурные испытания при высоких скоростях деформации. Важно, чтобы применяемые при моделировании механические характеристики материалов были получены на основе высокоскоростных, а не квазистатических испытаний элементарных образцов. В противном случае, поведение конструкции при моделировании не соответствует реальному [12]. Несмотря на развитие методов и инструментальных средств экспериментальных исследований материалов различной физической природы [13], задача определения механических характеристик полимерных композиционных материалов (ПКМ) в широком диапазоне скоростей деформации остается актуальной. В этой статье будет дан обзор методов определения механических характеристик и предложены собственные наработки авторов по данной теме. Необходимо заметить, что за пределами данного обзора оставлены методы исследования такой важной характеристики как трещиностойкость при высоких скоростях деформации, так как эта тема настолько обширна, что требует отдельного обзора. Также, не будут упоминаться исследования таких прочностных характеристик, как параметры многоосных критериев разрушения [14], так как экспериментальные методы для данной задачи отчасти те же, что и для «простых» характеристик, или же, наоборот, являются уникальными [15] и не распространены широко.

About the authors

S. D Konev

Skolkovo Institute of Science and Technology, Moscow, Russian Federation

A. Yu Konstantinov

Lobachevsky University, Nizhny Novgorod, Russian Federation

I. V Sergeichev

Skolkovo Institute of Science and Technology, Moscow, Russian Federation

References

  1. Crushing of composite tubular structures and energy absorption for aircraft seats development / J. E. Chambe, O. Dorival, C. Bouvet, J. F. Ferrero // ECCM 2018 - 18th European Conference on Composite Materials. – 2020
  2. Ren, Y. A novel aircraft energy absorption strut system with corrugated composite plate to improve crashworthiness / Y. Ren, H. Zhang, J. Xiang // International Journal of Crashworthiness. – 2018. – Vol. 23. – № 1. – P. 1-10
  3. Chen, P. W. Evaluation on crashworthiness and energy absorption of composite light airplane / P. W. Chen, Y. Y. Lin // Advances in Mechanical Engineering. – 2018. – Vol. 10. – № 8. – P. 1-12
  4. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading / G. Zhu, G. Sun, H. Yu [et al.] // International Journal of Mechanical Sciences. – 2018. – Vol. 135. – P. 458-483
  5. Crashworthiness of automotive composite material systems / G. C. Jacob, J. F. Fellers, J. M. Starbuck, S. Simunovic // Journal of Applied Polymer Science. – 2004. – Vol. 92. – № 5. – P. 3218-3225
  6. A comparative study of impact effect of composite cylinders and type IV pressure vessels / N. H. Farhood, S. Karuppanan, H. H. Ya, W. E. Abdul-Lateef // Emerging Materials Research. – 2021. – Vol. 10. – № 2. – P. 206-217
  7. Scazzosi, R. Numerical simulation of high-velocity impact on fiber-reinforced composites using MAT_162 / R. Scazzosi, M. Giglio, A. Manes // Material Design and Processing Communications. – 2021. – Vol. 3. – № 3
  8. Mousavi, M. V. Investigation of energy absorption in hybridized fiber-reinforced polymer composites under high-velocity impact loading / M. V. Mousavi, H. Khoramishad // International Journal of Impact Engineering. – 2020. – Vol. 146. – P. 103692
  9. Deb, A. Crashworthiness design issues for lightweight vehicles / A. Deb // Materials, Design and Manufacturing for Lightweight Vehicles. – Elsevier, 2021. – P. 433-470
  10. Effects of strain rate on failure mechanisms and energy absorption in polymer composites / M. R. R. Nurul Fazita, H. P. S. P. S. Abdul Khalil, A. Nor Amira Izzati, S. Rizal. – Text : electronic // Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. – Elsevier, 2019. – P. 51-78. – URL: https://linkinghub.elsevier.com/retrieve/pii/B9780081022931000036 (date accessed: 08.04.2023)
  11. Ismail, A. E. Modeling of crushing mechanisms of hybrid metal/fiber composite cylindrical tubes / A. E. Ismail, K.-A. Kamarudin // Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. – Elsevier, 2019. – P. 27-39
  12. Ahmad, B. Strain rate-dependent crash simulation of woven glass fabric thermoplastic composites / B. Ahmad, X. Fang // Journal of Reinforced Plastics and Composites. – 2022. – Vol. 41. – № 15-16. – P. 637-658
  13. Review of Intermediate Strain Rate Testing Devices / T. Bhujangrao, C. Froustey, E. Iriondo [et al.] // Metals. – 2020. – Vol. 10. – № 7. – P. 894
  14. Thomson, D. M. Physically-based meso-scale modelling of unidirectional CFRPs for impact loading applications - PhD Thesis / D. M. Thomson. – 2019
  15. Achieving synchronous compression-shear loading on SHPB by utilizing mechanical metamaterial / Q. Ren, Y. Zhang, L. Hu [et al.] // International Journal of Impact Engineering. – 2024. – Vol. 186. – P. 104888
  16. Perry, J. I. Measuring the Effect of Strain Rate on Deformation and Damage in Fibre-Reinforced Composites: A Review / J. I. Perry, S. M. Walley. – Text : electronic // Journal of Dynamic Behavior of Materials. – 2022. – Vol. 8. – № 2. – P. 178-213. – URL: https://doi.org/10.1007/s40870-022-00331-0 (date accessed: 29.11.2022)
  17. Davies, E. D. H. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar / E. D. H. Davies, S. C. Hunter // Journal of the Mechanics and Physics of Solids. – 1963. – Vol. 11. – № 3
  18. George T. (Rusty) Gray, I. Classic Split-Hopkinson Pressure Bar Testing / I. George T. (Rusty) Gray // Mechanical Testing and Evaluation. – Ohio : ASM International, 2000. – P. 462-476
  19. A new technique for tensile testing of engineering materials and composites at high strain rates / J. Zhou, A. Pellegrino, U. Heisserer [et al.] // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. – 2019. – Vol. 475. – № 2229. – P. 20190310
  20. Blitterswyk, J. Van. High-Strain Rate Interlaminar Shear Testing of Fibre-Reinforced Composites Using an Image-Based Inertial Impact Test / J. Van Blitterswyk, L. Fletcher, F. Pierron // Conference Proceedings of the Society for Experimental Mechanics Series / 2019. – Vol. 1. – P. 279-281
  21. Fletcher, L. A Novel Image-Based Inertial Impact Test (IBII) for the Transverse Properties of Composites at High Strain Rates / L. Fletcher, J. Van-Blitterswyk, F. Pierron // Journal of Dynamic Behavior of Materials. – 2019. – Vol. 5. – № 1. – P. 65-92
  22. Blitterswyk, J. Van. Characterisation of the Interlaminar Properties of Composites at High Strain Rates: A Review / J. Van Blitterswyk, L. Fletcher, F. Pierron // Advanced Experimental Mechanics. – 2017. – Vol. 2. – P. 3-28
  23. Blitterswyk, J. Van. Image-Based Inertial Impact Test for Composite Interlaminar Tensile Properties / J. Van Blitterswyk, L. Fletcher, F. Pierron // Journal of Dynamic Behavior of Materials. – 2018. – Vol. 4. – № 4. – P. 543-572
  24. Stress-strain synchronization for high strain rate tests on brittle composites / S. W. F. Spronk, E. Verboven, F. A. Gilabert [et al.]. – Text : electronic // Polymer Testing. – 2018. – Vol. 67. – № December 2017. – P. 477-486. – URL: https://doi.org/10.1016/j.polymertesting.2018.02.008 (date accessed: 21.04.2023)
  25. Hsiao, H. M. Strain Rate Effects on the Transverse Compressive and Shear Behavior of Unidirectional Composites / H. M. Hsiao, I. M. Daniel, R. D. Cordes // Journal of Composite Materials. – 1999. – Vol. 33. – № 17. – P. 1620-1642
  26. Duan, S. Experimental study on strain-rate-dependent behavior and failure modes of long glass fiber-reinforced polypropylene composite / S. Duan, X. Yang, Y. Tao // Journal of Reinforced Plastics and Composites. – 2015. – Vol. 34. – № 15. – P. 1261-1270
  27. Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading / H. Kolsky // Proceedings of the Physical Society. Section B. – 1949. – Vol. 62. – № 11
  28. Gama, B. A. Hopkinson bar experimental technique: A critical review / B. A. Gama, S. L. Lopatnikov, J. W. Gillespie // Applied Mechanics Reviews. – 2004. – Vol. 57. – № 4. – P. 223-250
  29. Matthews, F. L. Compression / F. L. Matthews. – Text : electronic // Mechanical Testing of Advanced Fibre Composites. – Woodhead Publishing, 2000. – P. 75-99. – URL: https://linkinghub.elsevier.com/retrieve/pii/B9781855733121500093 (date accessed: 06.09.2024)
  30. Mostapha, T. Experimental Investigation of Dynamic Compression and Damage Kinetics of Glass/Epoxy Laminated Composites under High Strain Rate Compression / T. Mostapha. – Text : electronic // Advances in Composite Materials - Ecodesign and Analysis / – InTech, 2011. – URL: https://www.intechopen.com/state.item.id (date accessed: 06.10.2022)
  31. Kuhn, P. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate / P. Kuhn, M. Ploeckl, H. Koerber. – Text : electronic. – 2015. – Vol. 94. – P. 1041. – URL: https://www.researchgate.net/publication/281743559 (date accessed: 16.02.2023)
  32. A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites / M. Ploeckl, P. Kuhn, J. Grosser [et al.]. – Text : electronic // Composite Structures. – 2017. – Vol. 180. – P. 429-438. – URL: http://dx.doi.org/10.1016/j.compstruct.2017.08.048 (date accessed: 10.04.2023)
  33. Lee, J. A study on the compressive strength of thick carbon fibre–epoxy laminates / J. Lee, C. Soutis // Composites Science and Technology. – 2007. – Vol. 67. – № 10. – P. 2015-2026
  34. Strain-Rate Dependency of a Unidirectional Filament Wound Composite under Compression / S. Konev, V. A. Eremeyev, H. M. Sedighi [et al.]. – Text : electronic // Computer Modeling in Engineering Sciences. – 2023. – Vol. 137. – № 3. – P. 2149-2161. – URL: http://dodssp.daps.dla.mil. (date accessed: 29.04.2023)
  35. Staab, G. H. High Strain Rate Response of Angle-Ply Glass/Epoxy Laminates / G. H. Staab, A. Gilat // Journal of Composite Materials. – 1995. – Vol. 29. – № 10. – P. 1308-1320
  36. The strain rate dependent material behavior of S-GFRP extracted from GLARE / R. Gerlach, C. R. Siviour, J. Wiegand, N. Petrinic // Mechanics of Advanced Materials and Structures. – 2013. – Vol. 20. – № 7. – P. 505-514
  37. Taniguchi, N. Tensile strength of unidirectional CFRP laminate under high strain rate / N. Taniguchi, T. Nishiwaki, H. Kawada. – Text : electronic // Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials. – 2007. – Vol. 16. – № 2. – P. 167-180. – URL: https://www.tandfonline.com/action/journalInformation?journalCode=tacm20 (date accessed: 09.04.2023)
  38. Daniel, I. M. New method for testing composites at very high strain rates / I. M. Daniel, R. H. LaBedz, T. Liber // Experimental Mechanics. – 1981. – Vol. 21. – № 2. – P. 71-77
  39. Filippov, A. R. Metodika dinamicheskikh ispytanii vysokoprochnykh kompozitov na rastiazhenie / A. R. Filippov // Problemy prochnosti i plastichnosti. – 2024. – Vol. 86. – № 1. – P. 106-119
  40. Harding, J. A tensile testing technique for fibre-reinforced composites at impact rates of strain / J. Harding, L. M. Welsh. – Text : electronic // Journal of Materials Science. – 1983. – Vol. 18. – № 6. – P. 1810-1826. – URL: https://link.springer.com/article/10.1007/BF00542078 (date accessed: 20.12.2022)
  41. Exploding wire method for the characterization of dynamic tensile strength of composite materials / A. Fedorenko, Y. Sudenkov, S. Konev, I. Sergeichev // International Journal of Impact Engineering. – 2023. – Vol. 180. – № June. – P. 104704
  42. Elamin, M. Plate impact method for shock physics testing / M. Elamin, J. Varga // Material Science Engineering International Journal. – 2020. – Vol. 4. – № 1
  43. Bragov A.M., Grushevskii G.M., O. L. K. Ustanovka dlia issledovaniia mekhanicheskikh svoistv tverdykh tel pri udarnom nagruzhenii / O. L. K. Bragov A.M., Grushevskii G.M. // Zavodskaia laboratoriia. – 1991. – Vol. 7. – P. 50-51
  44. Shear properties of epoxy under high strain rate loading / N. K. Naik, R. Gadipatri, N. M. Thoram [et al.] // Polymer Engineering Science. – 2010. – Vol. 50. – № 4. – P. 780-788
  45. Lewis, J. L. The development and use of a torsional Hopkinson-bar apparatus / J. L. Lewis, J. D. Campbell. – Text : electronic // Experimental Mechanics. – 1972. – Vol. 12. – № 11. – P. 520-524. – URL: https://link.springer.com/article/10.1007/BF02320749 (date accessed: 30.04.2023)
  46. Gilat, A. Torsional split Hopkinson bar tests at strain rates above 104 s-1 / A. Gilat, C. S. Cheng // Experimental Mechanics. – 2000. – Vol. 40. – № 1. – P. 54-59
  47. Dong, L. A single-lap shear specimen for determining the effect of strain rate on the interlaminar shear strength of carbon fibre-reinforced laminates / L. Dong, J. Harding // Composites. – 1994. – Vol. 25. – № 2. – P. 129-138
  48. Bouette, B. Effect of strain rate on interlaminar shear properties of carbon/epoxy composites / B. Bouette, C. Cazeneuve, C. Oytana // Composites Science and Technology. – 1992. – Vol. 45. – № 4. – P. 313-321
  49. Hsiao, H. M. Dynamic compressive behavior of thick composite materials / H. M. Hsiao, I. M. Daniel, R. D. Cordes // Experimental Mechanics. – 1998. – Vol. 38. – № 3. – P. 172-180
  50. Kidane, A. Strain Rate Effects in Polymer Matrix Composites Under Shear Loading: A Critical Review / A. Kidane, H. L. Gowtham, N. K. Naik // Journal of Dynamic Behavior of Materials. – 2017. – Vol. 3. – № 1. – P. 110-132
  51. Werner, S. M. The Dynamic Response of Graphite Fiber-Epoxy Laminates at High Shear Strain Rates / S. M. Werner, C. K. H. Dharan // Journal of Composite Materials. – 1986. – Vol. 20. – № 4. – P. 365-374
  52. Development and Application of Dynamic Integrated DIC Material Parameters Inversion Method for SHPB Tests / S. Cai, J. Zhao, Z. Liu, Y. Fu // Experimental Mechanics. – 2024. – Vol. 64. – № 7. – P. 995-1003
  53. Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network / C. Jailin, A. Benady, R. Legroux, E. Baranger // Experimental Mechanics. – 2024. – Vol. 64. – № 9. – P. 1465-148

Statistics

Views

Abstract - 6

PDF (Russian) - 3

Cited-By


PlumX


Copyright (c) 2024 Konev S.D., Konstantinov A.Y., Sergeichev I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies