ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАДАЧИ УСТОЙЧИВОСТИ ПЕРФОРИРОВАННЫХ ОБОЛОЧЕК
- Авторы: Антипов АА1, Артемьева АА2, Баженов ВГ2, Жестков МН2, Кибец АИ2
- Учреждения:
- Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики
- Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского
- Выпуск: № 1 (2015)
- Страницы: 21-30
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/261
- DOI: https://doi.org/10.15593/perm.mech/2015.1.02
- Цитировать
Аннотация
Методом конечных элементов исследована устойчивость густо перфорированных цилиндрических оболочек под действием внешнего давления. Задача решена на основе теории оболочек с использованием конструктивно ортотропной модели. Параметры ортотропного материала в виде коэффициентов снижения жесткости определялись из решения задачи деформирования циклически повторяющегося элемента конструкции (структурного элемента) на растяжение, сдвиг и изгиб с различной степенью перфорации (пористости). Исследования структурного элемента проводились методами механики сплошной среды и теории оболочек типа Тимошенко. В результате получены коэффициенты снижения жесткости при различных значениях пористости и определена граница применимости теории оболочек для подобных задач. Проведено сравнение численно полученных результатов с аналитическими оценками Э.И. Григолюка и Л.А. Фильштинского. Верификация численно полученных параметров ортотропии проведена на основе решения задачи изгиба 1/4 части цилиндрической полосы, перфорированной одним рядом отверстий. Задача решалась в постановках механики сплошной среды и теории оболочек в совокупности с конструктивно ортотропной моделью с различными значениями пористости. Показано, что использование конечных элементов конструктивно-ортотропной оболочки с параметрами, определенными из решения трехмерной задачи растяжения и сдвига структурного элемента, правомерно в задачах изгиба для длинных волн. На основе теории оболочек в совокупности с конструктивно-ортотропной моделью проведено исследование устойчивости упругой цилиндрической перфорированной оболочки под действием внешнего давления для двух вариантов граничных условий. В результате получены значения критических давлений и соответствующие им формы потери устойчивости в зависимости от длины оболочки и степени перфорации.
Об авторах
А А Антипов
Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики
А А Артемьева
Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского
В Г Баженов
Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского
М Н Жестков
Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского
А И Кибец
Научно-исследовательский институт механики Нижегородского государственного университета им. Н.И. Лобачевского
Список литературы
- Григолюк Э.И., Фильштинский Л.А. Перфорированные пластины и оболочки. - М.: Наука, 1970. - 556 c.
- Преображенский И.Н. Устойчивость и колебания пластинок и оболочек с отверстиями. - М.: Машиностроение, 1981. - 191 с.
- Cristopher D. Moen, Schafer B.W. Direct Strength Design of Cold-Formed Steel Members with Perforations / The Johns Hopkins University, Department of Civil Engineering. - Baltimore, 2008. - 488 p.
- Карпов В.В. Прочность и устойчивость подкрепленных оболочек вращения. - М: Физматлит, 2010. - 119 с.
- Воробкова Н.Л., Преображенский И.Н. Обзор исследований по устойчивости пластинок и оболочек, ослабленных отверстиями // Расчет пространственных конструкций, 1973. - С. 89-112.
- Крысько В.А., Куцемако А.Н. Устойчивость и колебания неоднородных оболочек. - Саратов: Изд-во Сарат. гос. техн. ун-та, 1999. - 202 с.
- Лебедев А.В. Устойчивость пластин и оболочек, ослабленных отверстиями // Пятые Поляховские чтения: межд. науч. конф. по механике. - СПб., 2009. - С. 171.
- Fazilati J., Ovesy H.R. Finite strip dynamic instability analysis of perforated cylindrical shell panels // Composite Structures, ICCS. - 2012. - Vol. 94. - No. 3. - Р. 1259-1264.
- Eccher G., Rasmussen K.J.R., Zandonini R. Geometrically nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures // Thin-Walled Structures. - 2009. - No. 47. - P. 21-32.
- Buckling Optimization of Perforated Curved Shells / D. Wang [et al.] // Materials Science Forum. - Switzerland: Trans Tech Publications, 2012. - Vol. 697-698. - P. 614-617.
- Moen C.D., Schafer B.W. Elastic buckling of thin plates with holes in сompression or bending // Thin-Walled Structures. - 2009. - No. 47. - P. 1597-1607.
- Shariati M., Ali Dadrasi A. Numerical and Experimental Investigation of Loading Band on Buckling of Perforated Rectangular Steel Plates // Research Journal of Recent Sciences. - 2012. - Vol. 1. - No. 10. - P. 63-71.
- Конечно-элементное решение задачи упругопластического выпучивания сферической оболочки при квазистатическом сжатии в трехмерной постановке / А.А. Артемьева [и др.] // Проблемы прочности и пластичности. - 2011. - № 73. - С. 45-50.
- Верификация конечно-элементного решения трехмерных нестационарных задач упругопластического деформирования, устойчивости и закритического поведения оболочек / А.А. Артемьева [и др.] // Вычислительная механика сплошных сред. - 2010. - Т. 3, № 2. - С. 5-14.
- MacDonald M., Kulatunga M.P. Finite Element Analysis of Cold-Formed Steel Structural Members with Performations Subjected to Compression Loading // Mechanics and Mechanical Engineering. - 2013. - Vol. 17. - No. 2. - P. 127-139.
- Smirnov A.L., Lebedev A.V. Buckling of plates and shells weakened with ut-outs // 2nd South-East European Conference on Computational Mechanics. - Athens, Greece, 2009. - 209 p.
- Purba R., Bruneau M. Finite-Element Investigation and Design Recommendations for Perforated Steel Plate Shear Walls // Journal of Structural Engineering. - 2009. - Vol. 135. - No. 11. - P. 1367-1376.
- Победря Б.Е. Механика композиционных материалов. - М.: Изд-во Моск. ун-та, 1984. - С. 71-74.
- Лехницкий С.Г. Теория упругости анизотропного тела. - М.: Гос. изд-во техн.-теор. лит. - 1950. - С. 33-35.
- Abaqus. Analysis User’s Manual. Introduction, Spatial Modeling, and Execution. - PublisherSimulia, 2008. - 711 p.
- Matsagar Vasant A. Computing Stress and Displacement Response of Composite plates under blast // Disaster Advances. - 2014. - Vol. 7. - No. 1. - P. 23-38.
- Вольмир А.С. Устойчивость деформируемых систем. - М.: Наука, 1967. - 545 c.