NUMERICAL MODELLING OF PERFORATED SHELLS STABILITY

Abstract


In this paper, the finite element method is applied to investigate the stability of densely perforated cylindrical shells under external pressure. The problem is resolved based on the shell theory with an orthotropic material model. The orthotropic material parameters in the form of softening coefficients are determined from the solution of the problem of deformation of cyclically repeating structural elements under tensile, shear and bending with variable rates of perforation (porosity). The research of the structural elements has been produced using methods of continuum mechanics and Timoshenko-type theory. As a result of these considerations, softening coefficients are obtained for different values of porosity, also the limits of applicability of the shell theory were defined for the similar problems. The comparison of numerical results with the analytical estimates, obtained by Grigolyuk and Filshtinsky [1] is provided. Verification of the numerically obtained orthotropic parameters is based on solving the problem of bending of a band quarter, which has been performed with one row of holes. The problem is solved in the framework of continuum mechanics and the shell theory in conjunction with the structurally orthotropic model with different rates of porosity. It is confirmed that using the finite element method for the structurally orthotropic shell with parameters, determined from the solution of three-dimensional tensile and shear behavior, is applicable to the long waves bending problem. Investigation of the stability of perforated elastic cylindrical shell under external pressure is provided for two boundary conditions based on the shell theory and the structurally orthotropic mode. As a result, the critical pressure value and corresponding buckling modes are obtained depending on the shell length and perforation rates.

About the authors

A A Antipov

Russian Federal Nuclear Center - The All-Russian Research Institute of Experimental Physics

A A Artemyeva

Institute of Mechanics, Lobachevsky State University of Nizhny Novgorod

V G Bazhenov

Institute of Mechanics, Lobachevsky State University of Nizhny Novgorod

M N Zhestkov

Institute of Mechanics, Lobachevsky State University of Nizhny Novgorod

A I Kibec

Institute of Mechanics, Lobachevsky State University of Nizhny Novgorod

References

  1. Григолюк Э.И., Фильштинский Л.А. Перфорированные пластины и оболочки. - М.: Наука, 1970. - 556 c.
  2. Преображенский И.Н. Устойчивость и колебания пластинок и оболочек с отверстиями. - М.: Машиностроение, 1981. - 191 с.
  3. Cristopher D. Moen, Schafer B.W. Direct Strength Design of Cold-Formed Steel Members with Perforations / The Johns Hopkins University, Department of Civil Engineering. - Baltimore, 2008. - 488 p.
  4. Карпов В.В. Прочность и устойчивость подкрепленных оболочек вращения. - М: Физматлит, 2010. - 119 с.
  5. Воробкова Н.Л., Преображенский И.Н. Обзор исследований по устойчивости пластинок и оболочек, ослабленных отверстиями // Расчет пространственных конструкций, 1973. - С. 89-112.
  6. Крысько В.А., Куцемако А.Н. Устойчивость и колебания неоднородных оболочек. - Саратов: Изд-во Сарат. гос. техн. ун-та, 1999. - 202 с.
  7. Лебедев А.В. Устойчивость пластин и оболочек, ослабленных отверстиями // Пятые Поляховские чтения: межд. науч. конф. по механике. - СПб., 2009. - С. 171.
  8. Fazilati J., Ovesy H.R. Finite strip dynamic instability analysis of perforated cylindrical shell panels // Composite Structures, ICCS. - 2012. - Vol. 94. - No. 3. - Р. 1259-1264.
  9. Eccher G., Rasmussen K.J.R., Zandonini R. Geometrically nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures // Thin-Walled Structures. - 2009. - No. 47. - P. 21-32.
  10. Buckling Optimization of Perforated Curved Shells / D. Wang [et al.] // Materials Science Forum. - Switzerland: Trans Tech Publications, 2012. - Vol. 697-698. - P. 614-617.
  11. Moen C.D., Schafer B.W. Elastic buckling of thin plates with holes in сompression or bending // Thin-Walled Structures. - 2009. - No. 47. - P. 1597-1607.
  12. Shariati M., Ali Dadrasi A. Numerical and Experimental Investigation of Loading Band on Buckling of Perforated Rectangular Steel Plates // Research Journal of Recent Sciences. - 2012. - Vol. 1. - No. 10. - P. 63-71.
  13. Конечно-элементное решение задачи упругопластического выпучивания сферической оболочки при квазистатическом сжатии в трехмерной постановке / А.А. Артемьева [и др.] // Проблемы прочности и пластичности. - 2011. - № 73. - С. 45-50.
  14. Верификация конечно-элементного решения трехмерных нестационарных задач упругопластического деформирования, устойчивости и закритического поведения оболочек / А.А. Артемьева [и др.] // Вычислительная механика сплошных сред. - 2010. - Т. 3, № 2. - С. 5-14.
  15. MacDonald M., Kulatunga M.P. Finite Element Analysis of Cold-Formed Steel Structural Members with Performations Subjected to Compression Loading // Mechanics and Mechanical Engineering. - 2013. - Vol. 17. - No. 2. - P. 127-139.
  16. Smirnov A.L., Lebedev A.V. Buckling of plates and shells weakened with ut-outs // 2nd South-East European Conference on Computational Mechanics. - Athens, Greece, 2009. - 209 p.
  17. Purba R., Bruneau M. Finite-Element Investigation and Design Recommendations for Perforated Steel Plate Shear Walls // Journal of Structural Engineering. - 2009. - Vol. 135. - No. 11. - P. 1367-1376.
  18. Победря Б.Е. Механика композиционных материалов. - М.: Изд-во Моск. ун-та, 1984. - С. 71-74.
  19. Лехницкий С.Г. Теория упругости анизотропного тела. - М.: Гос. изд-во техн.-теор. лит. - 1950. - С. 33-35.
  20. Abaqus. Analysis User’s Manual. Introduction, Spatial Modeling, and Execution. - PublisherSimulia, 2008. - 711 p.
  21. Matsagar Vasant A. Computing Stress and Displacement Response of Composite plates under blast // Disaster Advances. - 2014. - Vol. 7. - No. 1. - P. 23-38.
  22. Вольмир А.С. Устойчивость деформируемых систем. - М.: Наука, 1967. - 545 c.

Statistics

Views

Abstract - 183

PDF (Russian) - 117

Cited-By


PlumX


Copyright (c) 2015 Antipov A.A., Artemyeva A.A., Bazhenov V.G., Zhestkov M.N., Kibec A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies