Технологии и задачи механики композиционных материалов для создания лопатки спрямляющего аппарата авиационного двигателя

Аннотация


Елью настоящей работы является анализ современных технологий и постановок задач механики композиционных материалов для создания лопатки спрямляющего аппарата нового отечественного авиационного двигателя ПД-14, планируемого для установки на ближне-среднемагистральный самолет МС-21. Спрямляющий аппарат представляет собой кольцевой набор профилированных лопаток, расположенных за рабочим колесом вентилятора и обеспечивающих выравнивание воздушного потока с целью уменьшения потерь в наружном контуре двигателя. С учетом большого количества лопаток на один двигатель снижение массы от применения полимерных композиционных материалов (ПКМ) вместо металла в лопатках спрямляющего аппарата может быть весьма значительным. Прогнозируется, что снижение массы каждой лопатки может достигать 40 %. Представлены результаты литературного обзора вариантов применения композиционных материалов в узлах и деталях вентиляторов авиационных двигателей ведущих мировых компаний. Представлен анализ перспективных технологий композиционных материалов для создания лопатки спрямляющего аппарата: препреговая технология с последующим автоклавным формованием, метод RTM (пропитка под давлением), применение термопластичных связующих и пресс-материалов. Отмечено, что для получения конструкций с высоким уровнем реализации механических свойств матералов и снижения вероятности дефектов необходима постановка и решение комплексных задач технологической механики композитов. Рассмотрены возможные варианты постановок задач, включающих различные разделы МДТТ, описывающих процессы фильтрации, физико-химического превращения, вязкоупругопластического деформирования в неоднородных средах, сопровождающие технологический цикл получения изделий из композиционных материалов. Исследовано влияние технологических параметров на механические свойства нескольких типов углепластиков при автоклавном формовании. С использованием соотношений механики слоистых пластин рассчитаны эффективные упругие и прочностные свойства углепластиков при применении квазиизотропной схемы армирования. Получена сравнительная оценка эффективности использования композиционных материалов в конструкции ЛСА.

Об авторах

А Н Аношкин

Пермский национальный исследовательский политехнический университет

Email: anoshkin@pstu.ru

В Ю Зуйко

Пермский национальный исследовательский политехнический университет

Email: zuiko-kt@pstu.ru

Г С Шипунов

Пермский национальный исследовательский политехнический университет

Email: shipunov-kt@pstu.ru

А А Третьяков

Пермский национальный исследовательский политехнический университет

Email: tretyakov-kt@pstu.ru

Список литературы

  1. Иноземцев А.А. Наноиндустрия авиадвигателя // Пермские авиационные двигатели. - 2010. - № 20. - С. 32-34.
  2. Эксплуатационный ресурс стеклопластикового кожуха сопла авиационного газотурбинного двигателя / Рубцов С.М. [и др.] // Конструкции из композиционных материалов. - 2007. - № 3. - С. 81-89.
  3. Рубцов С.М. Полимерные волокнистые композиты в конструкции турбовентиляторного авиационного двигателя ПС-90А // Конверсия в машиностроении. - 2007. - № 3. - С. 19-26.
  4. King J. Composites for Aeroengines // Materials World. - 1997. - Vol. 5. - No. 6 - Р. 324-327.
  5. Warwick G. Carbon redux // Aviation Week & Space Technology. - Vol. 175. - No. 24. - P. 27.
  6. Уорвик Г. Rolls-Royce созрел для композитов [Электронный ресурс] // Авиатранспортное обозрение (АТО). - 2013. - № 142. - URL: http://www.ato.ru/content/rolls-royce-sozrel-dlya-kompozitov (дата обращения: 06.11.14).
  7. Coroneos R.M. Structural analysis and optimization of a composite fan blade for future aircraft engine // Technical Report. NASA Glenn Research Center; Cleveland, OH, USA - 2012. - ID: 20120013597.
  8. Bellini C., Carney J. The GEnx: Next generation aviation // University of Pittsburgh Swanson School of Engineering’s 12th Annual Freshman Engineering Conference. - 2012.
  9. Михалкин А.А. Рабочие лопатки вентилятора перспективных ТРДД // Авиационно-космическая техника и технология. - 2013. - № 9 (106). - С. 97-100.
  10. Donner R. Turbine Technology: The GEnx Engine // Aircraft maintenance technology. - 2010, available at: http://www.aviationpros.com/article/10372016/turbine-technology-the-genx-engine (accessed 6 November 2014).
  11. Ramsey J.W. Boeing 787: Integration’s Next Step // Avionics Magazine. - 2005, available at: http://www.aviationtoday.com/av/commercial/ Boeing-787-Integrations-Next-Step_932.html#.VG pbz _msXTo (accessed 6 November 2014).
  12. Нургалеев А. Rolls-Royce начала испытания композитно-титановых лопаток вентилятора [Электронный ресурс] // Авиатранспортное обозрение (АТО). - 2014. - URL: http://www.ato.ru/content/rolls-royce-nachala-ispytaniya-kompozitno-titanovyh-lopatok-ventilyatora (дата обращения: 06.11.14)
  13. Red C. Aviation Outlook: Composites in commercial aircraft jet engines // High-Performance Composites, 2008, available at: http://www. compositesworld.com/articles/aviation-outlook-composites-in-commercial-aircraft-jet-engines (accessed 6 November 2014).
  14. Norris G. HondaJet engine wins certification // Aviation Week & Space Technology. - 2013. - Vol. 175 - P. 50
  15. Composite trends from Hexcel. June 2011: Систем. требования: Adobe Acrobat Reader. - URL: http://www.hexcel.com/news/newsletters/ letter-20110626.pdf (дата обращения: 06.11.14).
  16. URL: http://www.gehonda.com (дата обращения: 06.11.14).
  17. Amoo L.M. On the design and structural analysis of jet engine fan blade structures // Progress in Aerospace Sciences. - 2013. - Vol. 60 - Р. 1-11. doi: 10.1016/j.paerosci.2012.08.002
  18. Nishikawaa M., Hemmib K., Takedac N. Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact for application to bird-strike problem of composite fan blades // Composite Structures. - 2011. - Vol. 93. - No. 5 - Р. 1416-1423. doi: 10.1016/j.compstruct.2010.11.012
  19. Carlos A., Estrada M. New technology used in gas turbine blade materials // Scientia Et Technica. - 2007. - Vol. XIII (36).
  20. Testing and analysis of a highly loaded composite flange / N.E. Jansson, A. Lutz, M. Wolfahrt, A. Sjunnesson // ECCM13: 13th European Conference on Composite Materials. - Stockholm, Sweden, 2008.
  21. Blecherman S., Stankunas T.N. Composite fan exit guide vanes for high bypass ratio gas turbine engines // Journal of Aircraft. - 1982. - Vol. 19. - No. 12. - P. 1032-1037. doi: 10.2514/3.44808
  22. Advances in gas turbine technology, book edited by Ernesto Benini // Materials for Gas Turbines - An Overview. By Nageswara Rao Muktinutalapati. doi: 10.5772/20730
  23. Koff B.L. Gas turbine technology evolution: a designer’s perspective // Journal of Propulsion and Power. - 2004. - Vol. 20. - No. 4. - P. 577-595.
  24. Structural composite fan exit guide vane for a turbomachine. Patent No.: EP2562361 A1. Nicholas D. Stilin, United Technologies Corporation, 2013.
  25. High pressure molding of composite parts. Patent No.: US 8734925 B2. Matthew Kweder, Bruno Boursier. Hexcel Corporation, 2014.
  26. Method and apparatus for a structural outlet guide vane. Patent No.: US 8177513 B2. Dong-Jul Shlm, Scott Finn, Apostolos Pavlos Karafillis, William Howard Hasting, Arjan Hegeman. General Electric Company, 2012.
  27. Stator vane for 3d composite blower. Patent No.: US20110110787 A1. Olivier Belmonte, Jean Noel Mahieu, Xavier Millier. Snecma, 2011.
  28. Каримбаев Т.Д., Луппов А.А., Афанасьев Д.В. Рабочие лопатки вентиляторов из углепластика для перспективных двигателей. Достижения и проблемы // Двигатель. - 2011. - № 6 (78). - С. 2-7.
  29. Пейчев Г.И. Разработка, экспериментальные исследования и доводка углепластиковой лопатки спрямляющего аппарата вентилятора двигателя Д-18Т // Авиационная промышленность. - 1989. - № 9. - С. 13-14.
  30. Лебедева Ю.Е., Попович Н.В., Орлова Л.А. Защитные высокотемпературные покрытия для композиционных материалов на основе SiC [Электронный реурс] // Труды ВИАМ. - 2013. - № 2. - URL: http://viam-works.ru/ru/articles?art_id=7 (дата обращения: 06.11.14).
  31. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications / M.C. Halbig, M.H. Jaskowiak, J.D. Kiser, D. Zhu // 41st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, available at: http://ntrs. nasa.gov/search.jsp?R=20130010774 (accessed 6 November 2014).
  32. Verrilli M.J., Robinson R.C., Calomino A.M. Сeramic matrix composite vane subelements tested in a gas turbine environment // Technical Report. NASA Glenn Research Center, Cleveland, OH, USA, 2003, available at: http://ntrs.nasa.gov/search.jsp?R=20050192260 (accessed 6 November 2014).
  33. Mital S.K., Goldberg R.K., Bonacuse P.J. Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite // 53rd AIAA Conference on Structures, Structural Dynamics and Materials (SDM). - 2012, available at: http://ntrs.nasa.gov/search.jsp?R=20120012848 (accessed 6 November 2014).
  34. Ceramic matrix composite turbine engine vane. Patent No.: US 8,210,803 B2. Jeffery R. Schaff, Jun Shi. United Technologies Corporation, 2012.
  35. Characterization of ceramic matrix composite vane subelements subjected to rig testing in a gas turbine environment / M. Verrilli, A. Calomino, D.J. Thomas, R.C. Robinson // Fifth International Conference on High Temperature Ceramic Matrix Composites, 2004, available at: http:// ntrs.nasa.gov/search.jsp?R=20050198903 (accessed 6 November 2014).
  36. Development of CMC Vane for Gas Turbine Engine / K. Watanbe, N. Suzumura, T. Nakamura, H. Murata, T. Araki, T. Natsumura // Ceramic Engineering and Science Proceedings. - 2003. - Vol. 24. - No. 4. - P. 599-604.
  37. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane / P.L.N. Murthya, N.N. Nemetha, D.N. Brewerb, S. Mitalc // Composites Part B: Engineering. - 2008. - Vol. 39. - No. 4 - P. 694-703. doi: 10.1016/j.compositesb.2007.05.006
  38. Лукина Н.Ф. Клеевые препреги на основе тканей Porcher - перспективные материалы для деталей и агрегатов из ПКМ [Электронный ресурс] // Труды ВИАМ. - 2014. - № 6. - URL: http://viam-works.ru/ ru/articles?art_id=677 (дата обращения: 06.11.14).
  39. Ахметов А.М.‚ Кондратец С.В.‚ Перлов С.В. Технология и оборудование для изготовления корпусных и роторных деталей ГТД методом намотки // Авиационная промышленность. - 2013. - № 2. - С. 47-49.
  40. Конструкционные и термостойкие клеи / Лукина Н.Ф. [и др.] // Авиационные материалы и технологии. - 2012. - № 5. - С. 328-335.
  41. Клеевые препреги и композиционные материалы на их основе / Лукина Н.Ф. [и др.] // Российский химический журнал. - 2010. - Т. LIV, № 1. - С. 53-56.
  42. Применение композиционных материалов на основе клеевых препрегов в конструкции деталей и агрегатов авиационной техники / Лукина Н. Ф. [и др.] // Сварочное производство. - 2014. - № 6. - С. 29-32.
  43. ASTM D 3039/D 3039M - 14. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.
  44. ASTM D 6641/D 6641M - 09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  45. ASTM D 7264/D 7261M - 07. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials.
  46. ASTM D 2344/D 2344M - 13. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.
  47. Liquid moulding technologies - resin transfer moulding, structural reaction injection moulding and related processing techniques / C.D. Rudd, A.C. Long, K.N. Kendall, C. Mangin. - Woodhead Publishing Ltd., Abington, England, 1997.
  48. Modelling of permeability of textile reinforcements: Lattice Boltzmann method / E.B. Belov, S.V. Lomov, I. Verpoest, T. Peters, D. Roose, R.S. Parnas, K. Hoes, H. Sol // Composites Science and Technology. - 2004. - Vol. 64. - Р. 1069-1080. doi: 10.1016/j.compscitech.2003.09.015
  49. Parnas R.S., Salem A.J. A comparison of the unidirectional and radial inplane flow of fluids through woven composite reinforcements // Polymer Composites. - 1993. - Vol. 14. - No. 5. - Р. 383-394. doi: 10.1002/pc.750140504
  50. Chen Z.-R., Ye L., Lu M. Permeability predictions for woven fabric preforms // Journal of Composite Materials. - 2010. - Vol. 44. - No. 13. - Р. 1569-1586. doi: 10.1177/0021998309355888
  51. Chang C.Y., Shih M.S. Numerical simulation on the void distribution in the fiber mats during the filling stage of RTM // Journal of reinforced plastics and composite. - 2003. - Vol. 22. - No. 16. - Р. 1437-1454. doi: 10.1177/073168403027992
  52. Numerical simulation of thickness variation effect on resin transfer molding process / A. Saad, A. Echchelh, M. Hattabi, M. El Ganaoui // Journal of Polymer composites. - 2012. -Vol. 33. - No. 1. - Р. 10-21. doi: 10.1002/pc.21226
  53. Naik N.K., Sirisha M., Inani A. Permeability characterization of polymer matrix composites by RTM/VARTM // Progress in Aerospace Sciences. - 2014. - Vol. 65. - Р. 22-40. doi: 10.1016/j.paerosci.2013.09.002
  54. Shojaeia A. A numerical study of filling process through multilayer preforms in resin injection/compression molding // Composites Science and Technology. - 2006. - Vol. 66. - No. 11-12. - Р. 1546-1557. doi: 10.1016/j.compscitech.2005.11.035
  55. Process simulation for a large composite aeronautic beam by resin transfer molding / S. Laurenzi, A. Grilli, M. Pinna, F. De Nicola, G. Cattaneo, M. Marchetti // Composites Part B: Engineering. - 2014. - Vol. 57. - Р. 47-55. doi: 10.1016/j.compositesb.2013.09.039
  56. Yi S., Hilton H.H., Ahmad M.F. Cure-cycle simulations of composites with temperature- and cure-dependent anisotropic viscoelastic properties and stochastic delaminations // Mechanics of Composite Materials and Structures. - 1998. - Vol. 5. - No. 1. - Р. 81-101. doi: 10.1080/10759419808945894
  57. Fernández I., Blas F., Frövel M. Autoclave forming of thermoplastic composite parts // Journal of Materials Processing Technology. - 2003. - Vol. 143-144. - Р. 266-269. doi: 10.1016/S0924-0136(03)00309-1
  58. Hubert P., Fernlund G., Poursartip A. Autoclave processing for composites / eds. S. Advani, K.-T. Hsiao // Manufacturing techniques for polymer matrix composites (PMCs). - Cambridge, UK, Woodhead Publishing Limited, 2012. - Р. 414-434. doi: 10.1533/9780857096258.3.414
  59. Lystrup A., Andersen T.L. Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix // Journal of Materials Processing Technology. - 1998. - Vol. 77. - No. 1-3. - P. 80-85. doi: 10.1016/S0924-0136(97)00398-1
  60. Simulation and improvement of temperature distributions of a framed mould during the autoclave composite curing process / G.N. Xie, J. Liu, W.H. Zang, G. Lorenzini, C. Biserni // Journal of Engineering Thermophysics. - 2013. - Vol. 22. - No. 1. - P. 43-61. doi: 10.1134/S1810232813010062
  61. Душин М.И., Хрульков А.В., Мухаметов P.P. Выбор технологических параметров автоклавного формования деталей из полимерных композиционных материалов // Авиационные материалы и технологии. - 2011. - № 3. - С. 20-26.
  62. Математическое моделирование процесса отверждения изделий из полимерных композиционных материалов методом вакуумного автоклавного формования в технологическом пакете / С.В. Мищенко [и др.] // Вестник ТГТУ. - 2001. - Т. 7, № 1. - С. 7-19.
  63. Kaushik V., Raghavan J. Experimental study of tool-part interaction during autoclave processing of thermoset polymer composite structures // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 9. - P. 1210-1218. doi: 10.1016/j.compositesa.2010.05.003
  64. Zeng X., Raghavan J. Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 9. - P. 1174-1183. doi: 10.1016/j.compositesa.2010.04.017
  65. Khan L.A., Nesbitt A., Day R.J. Hygrothermal degradation of 977-2A carbon/epoxy composite laminates cured in autoclave and Quickstep // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 8. - P. 942-953. doi: 10.1016/j.compositesa.2010.03.003
  66. Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts / D. Stefaniak, E. Kappel, T. Spröwitz, C. Hühne // Composites Part A: Applied Science and Manufacturing. - 2012. - Vol. 43. - No. 7. - P. 1081-1091. doi: 10.1016/j.compositesa.2012.02.013
  67. Experimental and numerical study on the effect of rubber mold configuration on the compaction of composite angle laminates during autoclave processing / C.B. Xin, Y.Z. Gu, M. Li, J. Luo, Y.X. Li, Z.G. Zhang // Composites Part A: Applied Science and Manufacturing. - 2011. - Vol. 42. - No. 10. - P. 1353-1360. doi: 10.1016/j.compositesa.2011.05.018
  68. Potter K. Understanding the origin of defects and variability in composites manufacture // Proceedings of the 17th international conference on composite materials. Edinburgh, UK, 2009.
  69. Mesogitis T.S., Skordos A.A., Long A.C. Uncertainty in the manufacturing of fibrous thermosetting composites: A review // Composites Part A: Applied Science and Manufacturing. - 2014. - Vol. 57. - P. 67-75. doi: 10.1016/j.compositesa.2013.11.004
  70. Herring M.L., Mardel J.I., Fox B.L. The effect of material selection and manufacturing process on the surface finish of carbon fibre composites // Journal of Materials Processing Technology. - 2010. - Vol. 210. - No. 6-7. - P. 926-940. doi: 10.1016/j.jmatprotec.2010.02.005
  71. Black S. Getting to know “Black Aluminum” // Modern Machine Shop. - 2008, available at: http://www.mmsonline.com/articles/getting-to-know-black-aluminum (accessed 6 November 2014).
  72. Скудра А.М., Булавс Ф.Я., Роценс К.А. Ползучесть и статическая усталость армированных пластиков. - Рига: Зинатне, 1971. - 238 с.
  73. Аношкин А.Н., Ташкинов А.А. Прогнозирование несущей способности композитных фланцев корпусных деталей авиадвигателей / Перм. гос. техн. ун-т. - Пермь, 1998. - 101 с.
  74. Постнова М.В., Постнов В.И. Опыт развития безавтоклавных методов формования ПКМ [Электронный ресурс] // Труды ВИАМ. - 2014. - № 4. - URL: http://viam-works.ru/plugins/content/journal/uploads/ articles/pdf/660.pdf (дата обращения: 06.11.14).
  75. Петрова Г.Н. Конструкционные материалы на основе армированных термопластов // Российский химический журнал. - 2010. - Т. LIV, № 1.
  76. Краснов Л.Л. Особенности формования пресс-волокнита на основе модифицированного фенолформальдегидного связующего [Электронный ресурс] // Труды ВИАМ. - 2014. - № 8. - URL: http://viam- works.ru/plugins/content/journal/uploads/articles/pdf/696.pdf (дата обращения: 06.11.14).

Статистика

Просмотры

Аннотация - 847

PDF (Russian) - 1026

Cited-By


PlumX


© Аношкин А.Н., Зуйко В.Ю., Шипунов Г.С., Третьяков А.А., 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах