Technologies and problems of composite materials mechanics for production of outlet guide vane for aircraft jet engine

Abstract


The goal of this work is an analysis of modern technologies and problem definitions of mechanics of composite materials for production of outlet guide vane for new domestic aviation propulsion PD-14, planned for installation on the short-range and mid-range jet aircraft MS-21. Outlet guide vanes (OGV), also called flow straightening vanes, are radially disposed behind the fan to straighten out the airflow to reduce losses in the outer contour of the engine. Considering a large number of vanes in the engine, the weight reduction can be very significant due to using polymer composite materials (PCM) instead of the metal in OGV. It is predicted that the weight reduction of each vane, at certain approach to design, can reach 40 %. The results of literature search of composite materials application in the details of fan for aircraft jet engines of world top manufacturers are presented in this paper. The analysis of advanced techniques for production of composite outlet guide vane, such as prepreg technology with autoclave molding, resin transfer molding (RTM), the use of thermoplastic binders and press-materials was carried out. It was noted that the formulation and solution of complex problems of engineering mechanics of composite materials are necessary for high-rate realization of mechanical properties in constructions and reducing the occurrence of defects. The possible problem definitions of deformable solid body mechanics, describing such processes as filtration, physical and chemical conversion, visco-elastic-plastic deformation in heterogeneous medium, typical for composite materials production cycle were considered. The influence of autoclave molding parameters on the mechanical properties of several types of carbon fiber reinforced plastics (CFRP) was analyzed. Using the equations of mechanics of laminated composite plates and shells we calculated effective elastic and strength properties of quasi-isotropic CFRP. A comparative estimate of the effectiveness of composite materials application in the design of OGV was obtained.

About the authors

A N Anoshkin

Perm National Research Polytechnic University

Email: anoshkin@pstu.ru

V Yu Zuiko

Perm National Research Polytechnic University

Email: zuiko-kt@pstu.ru

G S Shipunov

Perm National Research Polytechnic University

Email: shipunov-kt@pstu.ru

A A Tretyakov

Perm National Research Polytechnic University

Email: tretyakov-kt@pstu.ru

References

  1. Иноземцев А.А. Наноиндустрия авиадвигателя // Пермские авиационные двигатели. - 2010. - № 20. - С. 32-34.
  2. Эксплуатационный ресурс стеклопластикового кожуха сопла авиационного газотурбинного двигателя / Рубцов С.М. [и др.] // Конструкции из композиционных материалов. - 2007. - № 3. - С. 81-89.
  3. Рубцов С.М. Полимерные волокнистые композиты в конструкции турбовентиляторного авиационного двигателя ПС-90А // Конверсия в машиностроении. - 2007. - № 3. - С. 19-26.
  4. King J. Composites for Aeroengines // Materials World. - 1997. - Vol. 5. - No. 6 - Р. 324-327.
  5. Warwick G. Carbon redux // Aviation Week & Space Technology. - Vol. 175. - No. 24. - P. 27.
  6. Уорвик Г. Rolls-Royce созрел для композитов [Электронный ресурс] // Авиатранспортное обозрение (АТО). - 2013. - № 142. - URL: http://www.ato.ru/content/rolls-royce-sozrel-dlya-kompozitov (дата обращения: 06.11.14).
  7. Coroneos R.M. Structural analysis and optimization of a composite fan blade for future aircraft engine // Technical Report. NASA Glenn Research Center; Cleveland, OH, USA - 2012. - ID: 20120013597.
  8. Bellini C., Carney J. The GEnx: Next generation aviation // University of Pittsburgh Swanson School of Engineering’s 12th Annual Freshman Engineering Conference. - 2012.
  9. Михалкин А.А. Рабочие лопатки вентилятора перспективных ТРДД // Авиационно-космическая техника и технология. - 2013. - № 9 (106). - С. 97-100.
  10. Donner R. Turbine Technology: The GEnx Engine // Aircraft maintenance technology. - 2010, available at: http://www.aviationpros.com/article/10372016/turbine-technology-the-genx-engine (accessed 6 November 2014).
  11. Ramsey J.W. Boeing 787: Integration’s Next Step // Avionics Magazine. - 2005, available at: http://www.aviationtoday.com/av/commercial/ Boeing-787-Integrations-Next-Step_932.html#.VG pbz _msXTo (accessed 6 November 2014).
  12. Нургалеев А. Rolls-Royce начала испытания композитно-титановых лопаток вентилятора [Электронный ресурс] // Авиатранспортное обозрение (АТО). - 2014. - URL: http://www.ato.ru/content/rolls-royce-nachala-ispytaniya-kompozitno-titanovyh-lopatok-ventilyatora (дата обращения: 06.11.14)
  13. Red C. Aviation Outlook: Composites in commercial aircraft jet engines // High-Performance Composites, 2008, available at: http://www. compositesworld.com/articles/aviation-outlook-composites-in-commercial-aircraft-jet-engines (accessed 6 November 2014).
  14. Norris G. HondaJet engine wins certification // Aviation Week & Space Technology. - 2013. - Vol. 175 - P. 50
  15. Composite trends from Hexcel. June 2011: Систем. требования: Adobe Acrobat Reader. - URL: http://www.hexcel.com/news/newsletters/ letter-20110626.pdf (дата обращения: 06.11.14).
  16. URL: http://www.gehonda.com (дата обращения: 06.11.14).
  17. Amoo L.M. On the design and structural analysis of jet engine fan blade structures // Progress in Aerospace Sciences. - 2013. - Vol. 60 - Р. 1-11. doi: 10.1016/j.paerosci.2012.08.002
  18. Nishikawaa M., Hemmib K., Takedac N. Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact for application to bird-strike problem of composite fan blades // Composite Structures. - 2011. - Vol. 93. - No. 5 - Р. 1416-1423. doi: 10.1016/j.compstruct.2010.11.012
  19. Carlos A., Estrada M. New technology used in gas turbine blade materials // Scientia Et Technica. - 2007. - Vol. XIII (36).
  20. Testing and analysis of a highly loaded composite flange / N.E. Jansson, A. Lutz, M. Wolfahrt, A. Sjunnesson // ECCM13: 13th European Conference on Composite Materials. - Stockholm, Sweden, 2008.
  21. Blecherman S., Stankunas T.N. Composite fan exit guide vanes for high bypass ratio gas turbine engines // Journal of Aircraft. - 1982. - Vol. 19. - No. 12. - P. 1032-1037. doi: 10.2514/3.44808
  22. Advances in gas turbine technology, book edited by Ernesto Benini // Materials for Gas Turbines - An Overview. By Nageswara Rao Muktinutalapati. doi: 10.5772/20730
  23. Koff B.L. Gas turbine technology evolution: a designer’s perspective // Journal of Propulsion and Power. - 2004. - Vol. 20. - No. 4. - P. 577-595.
  24. Structural composite fan exit guide vane for a turbomachine. Patent No.: EP2562361 A1. Nicholas D. Stilin, United Technologies Corporation, 2013.
  25. High pressure molding of composite parts. Patent No.: US 8734925 B2. Matthew Kweder, Bruno Boursier. Hexcel Corporation, 2014.
  26. Method and apparatus for a structural outlet guide vane. Patent No.: US 8177513 B2. Dong-Jul Shlm, Scott Finn, Apostolos Pavlos Karafillis, William Howard Hasting, Arjan Hegeman. General Electric Company, 2012.
  27. Stator vane for 3d composite blower. Patent No.: US20110110787 A1. Olivier Belmonte, Jean Noel Mahieu, Xavier Millier. Snecma, 2011.
  28. Каримбаев Т.Д., Луппов А.А., Афанасьев Д.В. Рабочие лопатки вентиляторов из углепластика для перспективных двигателей. Достижения и проблемы // Двигатель. - 2011. - № 6 (78). - С. 2-7.
  29. Пейчев Г.И. Разработка, экспериментальные исследования и доводка углепластиковой лопатки спрямляющего аппарата вентилятора двигателя Д-18Т // Авиационная промышленность. - 1989. - № 9. - С. 13-14.
  30. Лебедева Ю.Е., Попович Н.В., Орлова Л.А. Защитные высокотемпературные покрытия для композиционных материалов на основе SiC [Электронный реурс] // Труды ВИАМ. - 2013. - № 2. - URL: http://viam-works.ru/ru/articles?art_id=7 (дата обращения: 06.11.14).
  31. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications / M.C. Halbig, M.H. Jaskowiak, J.D. Kiser, D. Zhu // 41st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, available at: http://ntrs. nasa.gov/search.jsp?R=20130010774 (accessed 6 November 2014).
  32. Verrilli M.J., Robinson R.C., Calomino A.M. Сeramic matrix composite vane subelements tested in a gas turbine environment // Technical Report. NASA Glenn Research Center, Cleveland, OH, USA, 2003, available at: http://ntrs.nasa.gov/search.jsp?R=20050192260 (accessed 6 November 2014).
  33. Mital S.K., Goldberg R.K., Bonacuse P.J. Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite // 53rd AIAA Conference on Structures, Structural Dynamics and Materials (SDM). - 2012, available at: http://ntrs.nasa.gov/search.jsp?R=20120012848 (accessed 6 November 2014).
  34. Ceramic matrix composite turbine engine vane. Patent No.: US 8,210,803 B2. Jeffery R. Schaff, Jun Shi. United Technologies Corporation, 2012.
  35. Characterization of ceramic matrix composite vane subelements subjected to rig testing in a gas turbine environment / M. Verrilli, A. Calomino, D.J. Thomas, R.C. Robinson // Fifth International Conference on High Temperature Ceramic Matrix Composites, 2004, available at: http:// ntrs.nasa.gov/search.jsp?R=20050198903 (accessed 6 November 2014).
  36. Development of CMC Vane for Gas Turbine Engine / K. Watanbe, N. Suzumura, T. Nakamura, H. Murata, T. Araki, T. Natsumura // Ceramic Engineering and Science Proceedings. - 2003. - Vol. 24. - No. 4. - P. 599-604.
  37. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane / P.L.N. Murthya, N.N. Nemetha, D.N. Brewerb, S. Mitalc // Composites Part B: Engineering. - 2008. - Vol. 39. - No. 4 - P. 694-703. doi: 10.1016/j.compositesb.2007.05.006
  38. Лукина Н.Ф. Клеевые препреги на основе тканей Porcher - перспективные материалы для деталей и агрегатов из ПКМ [Электронный ресурс] // Труды ВИАМ. - 2014. - № 6. - URL: http://viam-works.ru/ ru/articles?art_id=677 (дата обращения: 06.11.14).
  39. Ахметов А.М.‚ Кондратец С.В.‚ Перлов С.В. Технология и оборудование для изготовления корпусных и роторных деталей ГТД методом намотки // Авиационная промышленность. - 2013. - № 2. - С. 47-49.
  40. Конструкционные и термостойкие клеи / Лукина Н.Ф. [и др.] // Авиационные материалы и технологии. - 2012. - № 5. - С. 328-335.
  41. Клеевые препреги и композиционные материалы на их основе / Лукина Н.Ф. [и др.] // Российский химический журнал. - 2010. - Т. LIV, № 1. - С. 53-56.
  42. Применение композиционных материалов на основе клеевых препрегов в конструкции деталей и агрегатов авиационной техники / Лукина Н. Ф. [и др.] // Сварочное производство. - 2014. - № 6. - С. 29-32.
  43. ASTM D 3039/D 3039M - 14. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.
  44. ASTM D 6641/D 6641M - 09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  45. ASTM D 7264/D 7261M - 07. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials.
  46. ASTM D 2344/D 2344M - 13. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.
  47. Liquid moulding technologies - resin transfer moulding, structural reaction injection moulding and related processing techniques / C.D. Rudd, A.C. Long, K.N. Kendall, C. Mangin. - Woodhead Publishing Ltd., Abington, England, 1997.
  48. Modelling of permeability of textile reinforcements: Lattice Boltzmann method / E.B. Belov, S.V. Lomov, I. Verpoest, T. Peters, D. Roose, R.S. Parnas, K. Hoes, H. Sol // Composites Science and Technology. - 2004. - Vol. 64. - Р. 1069-1080. doi: 10.1016/j.compscitech.2003.09.015
  49. Parnas R.S., Salem A.J. A comparison of the unidirectional and radial inplane flow of fluids through woven composite reinforcements // Polymer Composites. - 1993. - Vol. 14. - No. 5. - Р. 383-394. doi: 10.1002/pc.750140504
  50. Chen Z.-R., Ye L., Lu M. Permeability predictions for woven fabric preforms // Journal of Composite Materials. - 2010. - Vol. 44. - No. 13. - Р. 1569-1586. doi: 10.1177/0021998309355888
  51. Chang C.Y., Shih M.S. Numerical simulation on the void distribution in the fiber mats during the filling stage of RTM // Journal of reinforced plastics and composite. - 2003. - Vol. 22. - No. 16. - Р. 1437-1454. doi: 10.1177/073168403027992
  52. Numerical simulation of thickness variation effect on resin transfer molding process / A. Saad, A. Echchelh, M. Hattabi, M. El Ganaoui // Journal of Polymer composites. - 2012. -Vol. 33. - No. 1. - Р. 10-21. doi: 10.1002/pc.21226
  53. Naik N.K., Sirisha M., Inani A. Permeability characterization of polymer matrix composites by RTM/VARTM // Progress in Aerospace Sciences. - 2014. - Vol. 65. - Р. 22-40. doi: 10.1016/j.paerosci.2013.09.002
  54. Shojaeia A. A numerical study of filling process through multilayer preforms in resin injection/compression molding // Composites Science and Technology. - 2006. - Vol. 66. - No. 11-12. - Р. 1546-1557. doi: 10.1016/j.compscitech.2005.11.035
  55. Process simulation for a large composite aeronautic beam by resin transfer molding / S. Laurenzi, A. Grilli, M. Pinna, F. De Nicola, G. Cattaneo, M. Marchetti // Composites Part B: Engineering. - 2014. - Vol. 57. - Р. 47-55. doi: 10.1016/j.compositesb.2013.09.039
  56. Yi S., Hilton H.H., Ahmad M.F. Cure-cycle simulations of composites with temperature- and cure-dependent anisotropic viscoelastic properties and stochastic delaminations // Mechanics of Composite Materials and Structures. - 1998. - Vol. 5. - No. 1. - Р. 81-101. doi: 10.1080/10759419808945894
  57. Fernández I., Blas F., Frövel M. Autoclave forming of thermoplastic composite parts // Journal of Materials Processing Technology. - 2003. - Vol. 143-144. - Р. 266-269. doi: 10.1016/S0924-0136(03)00309-1
  58. Hubert P., Fernlund G., Poursartip A. Autoclave processing for composites / eds. S. Advani, K.-T. Hsiao // Manufacturing techniques for polymer matrix composites (PMCs). - Cambridge, UK, Woodhead Publishing Limited, 2012. - Р. 414-434. doi: 10.1533/9780857096258.3.414
  59. Lystrup A., Andersen T.L. Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix // Journal of Materials Processing Technology. - 1998. - Vol. 77. - No. 1-3. - P. 80-85. doi: 10.1016/S0924-0136(97)00398-1
  60. Simulation and improvement of temperature distributions of a framed mould during the autoclave composite curing process / G.N. Xie, J. Liu, W.H. Zang, G. Lorenzini, C. Biserni // Journal of Engineering Thermophysics. - 2013. - Vol. 22. - No. 1. - P. 43-61. doi: 10.1134/S1810232813010062
  61. Душин М.И., Хрульков А.В., Мухаметов P.P. Выбор технологических параметров автоклавного формования деталей из полимерных композиционных материалов // Авиационные материалы и технологии. - 2011. - № 3. - С. 20-26.
  62. Математическое моделирование процесса отверждения изделий из полимерных композиционных материалов методом вакуумного автоклавного формования в технологическом пакете / С.В. Мищенко [и др.] // Вестник ТГТУ. - 2001. - Т. 7, № 1. - С. 7-19.
  63. Kaushik V., Raghavan J. Experimental study of tool-part interaction during autoclave processing of thermoset polymer composite structures // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 9. - P. 1210-1218. doi: 10.1016/j.compositesa.2010.05.003
  64. Zeng X., Raghavan J. Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 9. - P. 1174-1183. doi: 10.1016/j.compositesa.2010.04.017
  65. Khan L.A., Nesbitt A., Day R.J. Hygrothermal degradation of 977-2A carbon/epoxy composite laminates cured in autoclave and Quickstep // Composites Part A: Applied Science and Manufacturing. - 2010. - Vol. 41. - No. 8. - P. 942-953. doi: 10.1016/j.compositesa.2010.03.003
  66. Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts / D. Stefaniak, E. Kappel, T. Spröwitz, C. Hühne // Composites Part A: Applied Science and Manufacturing. - 2012. - Vol. 43. - No. 7. - P. 1081-1091. doi: 10.1016/j.compositesa.2012.02.013
  67. Experimental and numerical study on the effect of rubber mold configuration on the compaction of composite angle laminates during autoclave processing / C.B. Xin, Y.Z. Gu, M. Li, J. Luo, Y.X. Li, Z.G. Zhang // Composites Part A: Applied Science and Manufacturing. - 2011. - Vol. 42. - No. 10. - P. 1353-1360. doi: 10.1016/j.compositesa.2011.05.018
  68. Potter K. Understanding the origin of defects and variability in composites manufacture // Proceedings of the 17th international conference on composite materials. Edinburgh, UK, 2009.
  69. Mesogitis T.S., Skordos A.A., Long A.C. Uncertainty in the manufacturing of fibrous thermosetting composites: A review // Composites Part A: Applied Science and Manufacturing. - 2014. - Vol. 57. - P. 67-75. doi: 10.1016/j.compositesa.2013.11.004
  70. Herring M.L., Mardel J.I., Fox B.L. The effect of material selection and manufacturing process on the surface finish of carbon fibre composites // Journal of Materials Processing Technology. - 2010. - Vol. 210. - No. 6-7. - P. 926-940. doi: 10.1016/j.jmatprotec.2010.02.005
  71. Black S. Getting to know “Black Aluminum” // Modern Machine Shop. - 2008, available at: http://www.mmsonline.com/articles/getting-to-know-black-aluminum (accessed 6 November 2014).
  72. Скудра А.М., Булавс Ф.Я., Роценс К.А. Ползучесть и статическая усталость армированных пластиков. - Рига: Зинатне, 1971. - 238 с.
  73. Аношкин А.Н., Ташкинов А.А. Прогнозирование несущей способности композитных фланцев корпусных деталей авиадвигателей / Перм. гос. техн. ун-т. - Пермь, 1998. - 101 с.
  74. Постнова М.В., Постнов В.И. Опыт развития безавтоклавных методов формования ПКМ [Электронный ресурс] // Труды ВИАМ. - 2014. - № 4. - URL: http://viam-works.ru/plugins/content/journal/uploads/ articles/pdf/660.pdf (дата обращения: 06.11.14).
  75. Петрова Г.Н. Конструкционные материалы на основе армированных термопластов // Российский химический журнал. - 2010. - Т. LIV, № 1.
  76. Краснов Л.Л. Особенности формования пресс-волокнита на основе модифицированного фенолформальдегидного связующего [Электронный ресурс] // Труды ВИАМ. - 2014. - № 8. - URL: http://viam- works.ru/plugins/content/journal/uploads/articles/pdf/696.pdf (дата обращения: 06.11.14).

Statistics

Views

Abstract - 949

PDF (Russian) - 1073

Cited-By


PlumX


Copyright (c) 2014 Anoshkin A.N., Zuiko V.Y., Shipunov G.S., Tretyakov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies