МОДЕЛИРОВАНИЕ МАРТЕНСИТНЫХ ПРЕВРАЩЕНИЙ В СТАЛЯХ: КИНЕМАТИКА МЕЗОУРОВНЯ
- Авторы: Няшина НД1, Трусов ПВ1
- Учреждения:
- Пермский национальный исследовательский политехнический университет
- Выпуск: № 4 (2014)
- Страницы: 118-151
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/284
- DOI: https://doi.org/10.15593/perm.mech/2014.4.05
- Цитировать
Аннотация
Рассматривается вывод кинематических соотношений, описывающих мартенситные переходы в сталях. Мартенситные переходы относятся к бездиффузионным твердотельным фазовым переходам, происходят со скоростями, близкими к скорости звука, и приводят к изменению типа решетки металла. Поэтому при описании кинематики мартенситного перехода необходимо учесть, с одной стороны, основные физические явления: перестройку решетки, аккомодацию остаточных напряжений, возникших вследствие этой перестройки, а с другой - наличие инвариантной (габитусной) плоскости, делающей возможным переход при столь высоких скоростях. Предлагаемая работа представляет одну из важных составляющих (подмодель) разрабатываемой двухуровневой математической модели твердотельных фазовых превращений при термомеханической обработке сталей. Модель основывается на подходах физической теории пластичности, позволяющей учитывать физические механизмы деформирования за счет введения дополнительных внутренних переменных на различных масштабных уровнях. Приводится вывод соотношений для градиента трансформационной деформации представительного объема мезоуровня как деформации с инвариантной плоскостью. По аналогии с пластической деформацией трансформационная задается соответствующей системой векторов - вектором нормали к инвариантной плоскости и вектором направления скольжения (эти векторы не перпендикулярны). Указанные векторы не определяются полностью только кристаллографией, как их аналоги в теории пластического сдвига по плоскостям скольжения. Они вычисляются с учетом величины изменения параметров решетки при фазовом переходе, аккомодационных механизмов, его сопровождающих. Приводятся результаты вычисления трансформационных систем, получаемых при аккомодации остаточных напряжений пластическими сдвигами и двойникованием по различным возможным системам в мартенсите. По рассчитанным трансформационным системам строятся градиенты деформации для мартенситного перехода в стали и их геометрическая интерпретация. Вычисленные собственные числа градиентов дают представление об изменении объема при мартенситном превращении. Полученные результаты расчета сравниваются с известными экспериментальными и теоретическими данными.
Об авторах
Н Д Няшина
Пермский национальный исследовательский политехнический университет
Email: nnd73@perm.ru
П В Трусов
Пермский национальный исследовательский политехнический университет
Email: tpv@matmod.pstu.ac.ru
Список литературы
- Билби Б.А., Христиан И.В. Мартенситные превращения // Успехи физических наук. - 1960. - Т. 70. - Вып. 3. - С. 515-564.
- Курдюмов Г.В., Утевский Л.М., Энтин Р.И. Превращения в железе и стали. - М: Наука,1977. - 240 c.
- Центральный металлический портал РФ. Мартенсит - образование и превращения. Ч. 1. [Электронный ресурс]. - URL: http://metallicheckiy-portal.ru/articles/chermet/fazovie_sostoyania/martensit _-_obrazovanie_i_prevrashenia/1 (дата обращения: 7.09.2014).
- Лахтин Ю.М., Леонтьева В.П. Материаловедение. - М.: Машиностроение, 1980. - 493 с.
- Болховитинов Н.Ф. Металловедение и термическая обработка. 2-е перераб. изд. - М.: Машгиз, 1952. - 426 с.
- Натапов Б.С. Термическая обработка металлов: учеб. пособие для вузов. - Киев: Вища школа, 1980. - 288 с.
- Металловедение и термическая обработка стали: справ. изд.: в 3 т. Т. II. Основы термической обработки / под. ред. М.Л. Бернштейна, А.Г. Рахштада. - 3-е изд., перераб. и доп. - М.: Металлургия, 1983. - 368 с.
- Исупова И.Л., Трусов П.В. Математическое моделирование фазовых превращений в сталях при термомеханической нагрузке // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2013. - № 3. - С. 126-156.
- Исупова И.Л., Трусов П.В. Обзор математических моделей для описания фазовых превращений в сталях // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2013. - № 3. - С. 157-191.
- Трусов П.В., Ашихмин В.Н., Швейкин А.И. Двухуровневая модель упругопластического деформирования поликристаллических материалов // Механика композиционных материалов и конструкций. - 2009. - Т. 15, № 3. - С. 327-344.
- Трусов П.В., Швейкин А.И. Многоуровневые физические модели моно- и поликристаллов. Статистические модели // Физическая мезомеханика. - 2011. - Т. 14, № 4. - С. 17-28.
- Трусов П.В., Швейкин А.И. Многоуровневые физические модели моно- и поликристаллов. Прямые модели // Физическая мезомеханика. - 2011. - Т. 14, № 5. - С. 5-30.
- Трусов П.В., Нечаева Е.С., Швейкин А.И. Применение несимметричных мер напряженного и деформированного состояния при построении многоуровневых конститутивных моделей материалов // Физическая мезомеханика. - 2013. - Т. 16, № 2. - С. 15-31.
- Бразгина О.В., Трусов П.В. Двухуровневая модель для описания упруговязкопластического деформирования ГПУ-металлов // Вычислительная механика сплошных сред. - 2012. - Т. 5, № 1. - С. 40-53. doi: 10.7242/1999-6691/2012.5.1.6
- Turteltaub S., Suiker A.S.J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations // Int. J. Solids and Structures. - 2005. doi: 10.1016/j.ijsolstr.2005.06.065
- Поздеев А.А.,Трусов П.В., Няшин Ю.И. Большие упруго-пластические деформации: теории, алгоритмы, приложения. - М.: Наука, 1986. - 232 с.
- Физика твердого тела / Г.Н. Елманов, А.Г. Залужный, В.И. Скрытный, Е.А. Смирнов, В.Н. Яльцев // Физическое материаловедение: учебник для вузов: в 6 т.; под. ред. Б.А. Калина. - М.: Изд-во Моск. физ.-инжен. ин-та, 2007. - Т. 1. - 236 с.
- Новиков И.И. Теория термической обработки: учебник. - 3-е изд., испр. и доп. - М.: Металлургия, 1978. - 392 с.
- Bhadeshia H.K.D.H., Kundu S., Abreu H. Mathematics of crystallographic texturein martensitic and related transformations // Microstructure and Textures in steel and other materials. - 2009. - Vol. XIX. - P. 19-31.
- Perdahcioğlu E.S. Constitutive Modeling of Metastable Austenitic Stainless Steel. - Ph.D. Thesis. Enschede, The Netherlands, 2008. - 145 р.
- Shape memory alloys, Part I: General properties and modeling of single crystals / E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao // Mechanics of Materials. - 2006. - Vol. 38. - P. 391-429. doi: 10.1016/j.mechmat.2005.05.027
- Grujicic M., Zhang Y. Crystal plasticity analysis of stress-assisted martensitic transformation in Ti-10V-2Fe-3Al (wt.%) // Journal of materials science. - 2000. - Vol. 35. - P. 4635-4647.
- Kouznetsova V.G., Balmachnov A., Geers M.G.D. A multi-scale model for structure-property relations of materials exhibitingmartensite transformation plasticity // Int J. Mater. Form. -2009. - Vol. 2. - Suppl. 1. -P. 491-494. doi: 10.1007/s12289-009-0578-6
- Thamburaja P., Anand L. Polycrystalline shape-memory materials: effect of crystallographic texture // Journal of the Mechanics and Physics of Solids - 2001. - Vol. 49. - P. 709-737.
- Lee M.-G., Rim S.-J., Han H.N. Crystal plasticity fine element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite // International journal of plasticity. - 2010. - Vol. 26. - P. 688-710.
- Hallberg H., Hakansson P., Ristinmaa M. A constitutive model for the formation of martensite in austenitic steels under large strain plasticity // International Journal of Plasticity - 2007. - Vol. 23 - Suppl. 7. - P. 1213-1239. doi: 10.1016/j.ijplas.2006.11.002
- Wechsler M.S., Liebermann D.S., Read Т.A. On the theory of the formation of martensite // J. Metals - 1953. -Vol. 5. - Sect. 2. - No. 11. - Р. 1503-1515.