Стратегии демпфирования колебаний конструкций с пьезоэлементами и внешними электрическими цепями и их экспериментальная иллюстрация

Аннотация


На основе известных литературных источников приводятся основные понятия о smart-материалах и описание стратегий демпфирования колебаний конструкций с пьезоэлементами и внешними электрическими цепями. Рассматриваются различные варианты внешних пассивных электрических цепей, состоящих из резисторов, индуктивностей и емкостей, и основные схемы активных внешних электрических цепей с обратной связью и упреждающей адаптивной фильтрацией. Приводятся результаты экспериментальных исследований по демпфированию колебаний консольной стальной балки при различных вариантах внешних пассивных электрических цепей и расположения пьезоэлементов. Результаты исследований привели к следующим выводам: применение резонансных цепей для демпфирования колебаний конструкции более эффективно, чем применение резистивных цепей; демпфирование колебаний увеличивается при расположении пьезоэлементов в зонах с наибольшим градиентом формоизменения; существуют моды колебаний конструкций, при которых на поверхности пьезоэлементов не возникает электрический потенциал, достаточный по величине, чтобы можно было использовать пьезоэлементы для демпфирования данной моды колебаний; параллельное подключение к внешней электрической цепи дополнительных пьезоэлементов позволяет добиться большей степени демпфирования колебаний, снижая значения оптимальных индуктивности и сопротивления; параметры оптимальной шунтирующей цепи для соответствующей моды колебаний не зависят от амплитуды колебаний, определяемой уровнем внешнего воздействия. Приводятся результаты эксперимента по демпфированию колебаний при импульсном нагружении на основе использования активной внешней электрической цепи при варианте управления с обратной связью.

Об авторах

М А Юрлов

Институт механики сплошных сред УрО РАН

Email: yurlovm@icmm.ru

Н А Юрлова

Институт механики сплошных сред УрО РАН

Email: yurlova@icmm.ru

Список литературы

  1. Smart materials for the 21st Century. ForesightSmart Materials Taskforce. Report Smart Materials & Systems Committee no. FMP/03/04/IOM3 56 p, available at: http://www.iom3.org/content/smart-materials-systems-foresight (accessed 20 October 2014).
  2. Moheimani S.O.R., Fleming A.J. Piezoelectric transducers for vibration control and damping. - Wien: Springer-Verlag, 2006. - 272 p.
  3. New Actuators for Aircraft and Space Applications / P. Jänker, F. Claeyssen, B. Grohmann, M. Christmann, T. Lorkowski, R. LeLetty, O. Sosniki, A. Pages // ACTUATOR-2008, 11th International Conference on New Actuators, Bremen, Germany, 9-11 June 2008. - Bremen, 2008. - P. 346-354.
  4. Kauffman J.L., Lesieutre G.A. Piezoelectric-Based Vibration Reduction of Turbomachinery Bladed Disks via Resonance Frequency Detuning // AIAA Journal, 2012. - Vol. 50. - No. 5. - P. 1137-1144.
  5. Nader M., Irschik H., Garßen H.-G. v. Aktive Schwingungs compensation im Leichtbau mit piezoelektrischen Materialien. Internationales Forum Mechatronik. - Linz, 2006.
  6. Nuffer J., Bein T. Application of piezoelectric materials in transportation industry // Global Symposium on Innovative Solutions for the Advancement of the Transport Industry, 4-6. October 2006. - Spain, San Sebastian. - 11 p.
  7. Kajiwara I., Uchiyama T., Arisaka T. Vibration Control of Hard Disk Drive with Smart Structure Technology for Improving Servo Performance /Eds. H. Ulbrich and L. Ginzinger // Motion and Vibration Control. - Springer Science+Business Media B.V., 2009. - P. 165-176.
  8. Bronowicki A.J., Abhyankarand N.S., Griffin S.F. Active vibration control of large optical space structures // Smart Mater. Struct., 1999. - No. 8. - P. 740-752.
  9. Nye T.W., Manningand R.A., Qassim K. Performance of active vibration control technology: the ACTEX flight experiments // Smart Mater. Struct. - 1999. - No. 8. - P. 767-780.
  10. Akhras G. Smart materials and smart systems for the future // Canadian Military Journal. - 2000. - No. 3. - P. 25-32.
  11. Janos B.Z., Hagood N.W. Owerview of active fiber composite technologies // MST News. Actuator Applications. Home Automation. - 1998. - № 3. - P. 25-29.
  12. Моделирование и оптимизация динамических характеристик smart-структур с пьезоматериалами / В.П. Матвеенко, Е.П. Клигман, М.А. Юрлов, Н.А. Юрлова // Физическая мезомеханика. - 2012. - Т. 15, № 1. - С. 75-85.
  13. Клигман Е.П., Матвеенко В.П., Юрлова Н.А. Динамические характеристики тонкостенных электроупругих систем // Известия РАН, МТТ. - 2005. - № 2. - С. 179-187.
  14. Hagood N.W, Von Flotow A. Damping of structural vibrations with piezoelectric materials and passive electrical networks // Journal of Sound and Vibration. - 1991. - Vol. 146. - No. 2. - P. 243-268.
  15. Forward R.L. Electronic damping of vibrations in optical structures // Journal of Applied Optics. - 1979. - Vol. 18. - No. 5. - P. 690-697.
  16. Lesieutre G.A. Vibration damping and control using shunted piezoelectric materials // The Shock and Vibration Digest. - 1998. - No. 30 - P. 187-195.
  17. Agnes G.S., Mall S. Structural integrity issues during piezoelectric vibration suppression of composite structures // Composites. - 1999. - Part B 30. - P. 727-738.
  18. Caruso G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping // Smart Mater. Struct. - 2001. - No. 10. - P. 1059-1068.
  19. Park C.H., Inman D.J. Enhanced Piezoelectric Shunt Design // Shock and Vibration. - 2003. - Vol. 10. - No. 2. - P. 127-133.
  20. Moheimani S.O.R., Fleming A.J., Behrens S. On the feedback structure of wideband piezoelectric shunt damping systems // Smart Mater. Struct., 2002. - No. 12. - P. 49-56.
  21. Wu S.Y. Piezoelectric Shunts with Parallel R-L Circuit for Structural Damping and Vibration Control / Proc. SPIE Smart Structures and Materials, Passive Damping and Isolation // SPIE. - 1996. - Vol. 2720. - P. 259-269.
  22. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.
  23. On piezoelectric energy conversion for electronic passive damping enhancement / D.L. Edberg, A.S. Bicos [et al.] // Proceedings of Damping’91, 1991. - US Air Force, San Diego, CA., 1991. - P. GBA-1.
  24. Hollkamp J.J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts // Journal of Intelligent Materials, Systems and Structures. - 1999. - No. 5. - P. 49-57.
  25. Riordan R.H.S. Simulated inductors using differential amplifiers // Electronics Letters. - 1967. - Vol. 3. - No. 2. - P. 50-51.
  26. Maciejewski I., Oleskiewicz R., Krzyzynski T. Active control of vibration in small and medium amplitude range of elements in automotive systems // Arch. Appl. Mech. - 2009. - Vol. 79. - P. 587-594.
  27. Moheimani S.O.R., Vautier B.J.G. Resonant control of structural vibration using charge-driven piezoelectric actuators // IEEE Transactions on Control Systems Technology. - 2005. - Vol. 13. - No. 6 - P. 1021-1035.
  28. Preumont A. Active vibration control. 2001. - 43 р, available at: http://www.ippt.gov.pl/~smart01/lectures/preumont.pdf (accessed 10 October 2014).
  29. Bianchini E. Active Vibration Control of Automotive Steering Wheels // SAE International. - 2005. - No. 1. - P. 2546-2552.
  30. Liao Y., Sodano H.A. Modeling and Comparison of Bimorph Power Harvesters with Piezoelectric Elements Connected in Parallel and Series // Journal of Intelligent Material Systems and Structures. - 2010. - No. 21. - P. 149-159.
  31. Viana F.A.C., Steffen V., Jr. Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits // J. of the Braz. Soc. of Mech. Sci. & Eng. July-September 2006. - 2006. - Vol. XXVIII. - No. 3. - P. 293-310.
  32. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.
  33. Kim H., Tadesse Y., Priya S. Piezoelectric Energy Harvesting // Energy Harvesting Technologies. - 2009. - 524 p. doi: 10.1007/978-0-387-76464-1
  34. Бахилина И.М., Степанов С.А. Синтез грубых линейных квадратичных гауссовских регуляторов // Автоматика и телемеханика. - 1998. - № 7. - С. 96-106.
  35. Методы классической и современной теории автоматического управления: учебник: в 3 т. Т. 3: Методы современной теории автоматического управления / под ред. Н.Д. Егупова. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2000. - 748 с.
  36. Active suppression of nonlinear composite beam vibrations by selected control algorithms / J. Warminski, M. Bochenski, W. Jarzyna, P. Filipek, M. Augustyniak // Commun. Nonlinear Sci. Numer. Simulat. - 2011. - No. 16. - P. 2237-2248.
  37. Kozlowski M.V., Cole D.G., Clark R.L. A Comprehensive Study of the RL Series Resonant Shunted Piezoelectric: A Feedback Controls Perspective // Journal of Vibration and Acoustics. - 2011. - Vol. 133. - No. 2. - P. 1-10.
  38. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Mater. Struct. - 2003. - Vol. 12. - P. 57-64.

Статистика

Просмотры

Аннотация - 127

PDF (Russian) - 148

Cited-By


PlumX


© Юрлов М.А., Юрлова Н.А., 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах