Алгоритм численного решения нелинейной краевой задачи динамического деформирования тонкого стержня
- Авторы: Пустовой НВ1, Левин ВЕ1, Красноруцкий ДА1
- Учреждения:
- Новосибирский государственный технический университет
- Выпуск: № 2 (2014)
- Страницы: 168-199
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/303
- DOI: https://doi.org/10.15593/perm.mech/2014.2.168-199
- Цитировать
Аннотация
В статье представлен алгоритм разработанной подпрограммы решения двухточечной краевой задачи для системы нелинейных дифференциальных уравнений первого порядка. Новый алгоритм ранее опубликованной подпрограммы KLPALG объединил в себе основные идеи подпрограммы BVPFD (DD14AD, PASVA3) и PASSIN, реализующей методику продолжения решения по параметру. Кроме того, приведены обобщенные результаты трудов авторов в задаче о нелинейном динамическом деформировании тонкого пространственного криволинейного стержня при расчете по его дифференциальной модели. Неизвестные функции, входящие в уравнения движения, разыскиваются в дискретных точках. По методам прямого интегрирования производные по времени выражаются через текущие координаты и найденные на предыдущих шагах по времени. Первая производная по координате заменяется конечной разностью, добавляются краевые условия. Полученная система нелинейных алгебраических уравнений решается с помощью метода Ньютона с контролем длины шага из условия сходимости. Матрица Якоби этой системы имеет блочную трехдиагональную структуру, которая поддается эффективному LU-разложению. Такая декомпозиция матрицы Якоби позволяет быстро решать соответствующие системы линейных алгебраических уравнений больших размеров. Если условие сходимости метода Ньютона дает слишком маленький шаг, тогда применяется техника продолжения решения по параметру (псевдодлина дуги). После того как решена основная система нелинейных уравнений, для уточнения узловых значений вычисляемых функций применяется так называемый метод отсроченной коррекции (deferred correction method). Этот метод позволяет вычесть из получаемого решения ошибку, внесенную аппроксимацией производной по методу конечных разностей на начальном этапе численного решения. Получаемое таким образом численное решение имеет назначенную точность. Такая методика реализована в виде подпрограммы KLPALG, алгоритм которой представлен в данной статье.
Об авторах
Н В Пустовой
Новосибирский государственный технический университет
Email: rector@nstu.ru
630073, г. Новосибирск, пр. К. Маркса, 20
В Е Левин
Новосибирский государственный технический университет
Email: levin@craft.nstu.ru
630073, г. Новосибирск, пр. К. Маркса, 20
Д А Красноруцкий
Новосибирский государственный технический университет
Email: krasnorutskiy@corp.nstu.ru
630073, г. Новосибирск, пр. К. Маркса, 20
Список литературы
- Светлицкий В.А. Механика стержней: учебник для втузов: в 2 ч. Ч. 1. Статика. - М.: Высш. шк., 1987. - 320 с.
- Жилин П.А. Прикладная механика. Теория тонких упругих стержней: учеб. пособие. - СПб.: Изд-во Политехн. ун-та, 2007. - 101 с.
- Светлицкий В.А. Строительная механика машин. Механика стержней: в 2 т. Т. 2. Динамика. - М.: Физматлит, 2009. - 383 с.
- Kirchhoff G.R. Ueber das Gleichgewicht und die Bewegung einer elastischen Staben // Crelle Journal fuer die reine und angewandte Mathematik. - 1858. - Bd. 56. - S. 285-313.
- Кирхгоф Г. Механика. - М.: Изд-во АН СССР, 1962. - 402 с.
- Ляв А. Математическая теория упругости.- М.; Л.: Объединение научно-технических издательств, 1935. - 674 с.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Применение геометрически нелинейных уравнений стержня к расчету статики и динамики тросов. Ч. 1 // Научный вестник Новосиб. гос. техн. ун-та, 2012. - № 1 (46). - С. 83-92.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Методика вычисления параметров больших поворотов поперечных сечений гибкого стержня при расчетах в рамках его дифференциальной модели. Ч. 1 // Научный вестник Новосиб. гос. техн. ун-та. - 2013. - № 2 (51). - С. 155-164.
- Красноруцкий Д.А., Левин В.Е., Пустовой Н.В. Нелинейная динамика тонких упругих стержней // Нелинейные колебания механических систем: труды IX Всерос. науч. конф. (Нижний Новгород, 24-29 сентября 2012 г.) / под ред. Д.В. Баландина, В.И. Ерофеева, И.С. Павлова. - Н. Новгород: Наш дом, 2012. - С. 557-565.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Методика вычисления параметров больших поворотов поперечных сечений гибкого стержня при расчетах в рамках его дифференциальной модели. Ч. 2 // Научный вестник Новосиб. гос. техн. ун-та. - 2013. - № 3(52). - С. 146-159.
- Светлицкий В.А. Механика стержней: учебник для втузов: в 2 ч. Ч. 1. Статика. - М.: Высш. шк., 1987. - 320 с.
- Жилин П.А. Прикладная механика. Теория тонких упругих стержней: учеб. пособие. - СПб.: Изд-во Политехн. ун-та, 2007. - 101 с.
- Светлицкий В.А. Строительная механика машин. Механика стержней: в 2 т. Т. 2. Динамика. - М.: Физматлит, 2009. - 383 с.
- Kirchhoff G.R. Ueber das Gleichgewicht und die Bewegung einer elastischen Staben // Crelle Journal fuer die reine und angewandte Mathematik. - 1858. - Bd. 56. - S. 285-313.
- Кирхгоф Г. Механика. - М.: Изд-во АН СССР, 1962. - 402 с.
- Ляв А. Математическая теория упругости.- М.; Л.: Объединение научно-технических издательств, 1935. - 674 с.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Применение геометрически нелинейных уравнений стержня к расчету статики и динамики тросов. Ч. 1 // Научный вестник Новосиб. гос. техн. ун-та, 2012. - № 1 (46). - С. 83-92.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Методика вычисления параметров больших поворотов поперечных сечений гибкого стержня при расчетах в рамках его дифференциальной модели. Ч. 1 // Научный вестник Новосиб. гос. техн. ун-та. - 2013. - № 2 (51). - С. 155-164.
- Красноруцкий Д.А., Левин В.Е., Пустовой Н.В. Нелинейная динамика тонких упругих стержней // Нелинейные колебания механических систем: труды IX Всерос. науч. конф. (Нижний Новгород, 24-29 сентября 2012 г.) / под ред. Д.В. Баландина, В.И. Ерофеева, И.С. Павлова. - Н. Новгород: Наш дом, 2012. - С. 557-565.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Методика вычисления параметров больших поворотов поперечных сечений гибкого стержня при расчетах в рамках его дифференциальной модели. Ч. 2 // Научный вестник Новосиб. гос. техн. ун-та. - 2013. - № 3(52). - С. 146-159.
- Сорокин Ф.Д. Прямое тензорное представление уравнений больших перемещений гибкого стержня с использованием вектора конечного поворота // Известия РАН. МТТ. - 1994. - № 1. - С. 164-168.
- Nonlinear dynamic deformation simulation for helical rod like objects / H. Du, W. Xiong, H. Wang, Z. Wang, B. Yuan // Engineering Review. - 2013. - Vol. 33. - Iss. 3. - P. 233-238.
- Bathe K.J. Finite Element Procedures. Englewood Cliffs. - NY: Prentice Hall, 1996. - 1037 p.
- Newmark N.M. A Method of Computation for Structural Dynamics // Journal of Engineering Mechanics Division, ASCE. - 1959. - Vol. 85. - No. EM3. - P. 67-94.
- Park К.С. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations // Journal of Applied Mechanics, ASME. - 1975. - Vol.42. - Iss. 2. - P. 464-470.
- Shampine L.F., Muir P.H., Xu H. A User-Friendly Fortran BVP Solver // Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM). - 2006. - Vol. 1. - No. 2. - P. 201-217.
- IMSL: Fortran Numerical Library. User’s Guide. Math Library. Version. 7.0, available at: http://www.roguewave.com/documents.aspx?entryid= 519&comma nd=core_download. - Date 27.05.2014. - Title from screen.
- Pereyra V. Pasva3: An adaptive finite difference fortran program for first order nonlinear, ordinary boundary problems // Lecture Notes in Computer Science. - 1979. - Vol. 76. - P. 67-88.
- Rashidinia J. Finite difference methods for a class of two-point boundary value problems // IUST International Journal of Engineering Science. - 2008. - Vol. 19. - No. 5-2. - P. 67-72.
- Вайнберг A.M. Математическое моделирование процессов переноса. Решение нелинейных краевых задач. - М.; Иерусалим, 2009. - 209 с.
- Dinkar Sharma, Ram Jiwari, Sheo Kumar. Numerical Solution of Two Point Boundary Value Problems Using Galerkin-Finite Element Method // International Journal of Nonlinear Science. - 2012. - Vol. 13. - No. 2. - P. 204-210.
- Lentini M. Boundary Value Problems over Semi-Infinite Intervals: Ph.D. Thesis / Cal. Inst, of Technology. - 1978. - 123 p.
- Keller H.B. Constructive Methods for Bifurcation and Nonlinear Eigenvalue Problems // Lecture Notes in Mathematics, 704. - Springer-Verlag Berlin Heidelberg, New York, 1979. - P. 241-251.
- Pereyra V., Keller H.B. Finite Difference Solution of Two-Point Boundary Value Problems: Preprint 69 / Dept. Math., Univ. - Southern California. - Los Angeles, 1976. - 130 p.
- Pereyra V. High Order Finite Difference Solution of Differential Equations. - Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973. - 86 p.
- Lentini M., Pereyra V. An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers // SIAM J. Numer. Anal. - 1977. - Vol. 14. - No. 1. - P. 91-111.
- Красноруцкий Д.А. Развитие модели тонкого упругого стержня для расчета изгибно-крутильных колебаний авиационных лопастей // Наука. Промышленность. Оборона: тр. 13 Всерос. науч.-техн. конф.; Новосиб. гос. техн. ун-т. - Новосибирск, 2012. - С. 328-332.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Математическое моделирование контактного взаимодействия витков гибкого стержня при петлеобразовании // Прикладные задачи математики: материалы 21-й Междунар. науч.-техн. конф. (Севастополь, 16-20 сент. 2013 г.). - Севастополь: Изд-во Севастоп. нац. техн. ун-та, 2013. - С. 47-51.
- Аргирис Дж. Современные достижения в методах расчета конструкций с применением матриц. - М.: Изд-во лит. по строительству, 1968. - 242 с.
- Argyris J.H. An excursion into large rotations // Comp. Meth. Appl. Mech. Eng. - 1982. - Vol. 32. - No. 1. - P. 85-155.
- Björck A., Pereyra V. Solution of Vandermonde Systems of Equations // Mathematics of computation. - 1970. - Vol. 24. - No. 112. - P. 893-903.
- Пустовой Н.В., Левин В.Е., Красноруцкий Д.А. Применение геометрически нелинейных уравнений стержня к расчету статики и динамики тросов. Ч. 2 // Научный вестник Новосиб. гос. техн. ун-та. - 2012. - № 2. - С. 106-116.
- Ortega J.M. and Rheinboldt W.C. Iterative Solution of Nonlinear Equations in Several Variables. - New York: Academic Press, 1970. - 572 p.
- Deuflhard P. A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques // Mathematik. - 1979. - P. 115-146.