Математическое моделирование процесса прямого отжима масличной культуры
- Авторы: Анферов СД1, Скульский ОИ1, Славнов ЕВ1
- Учреждения:
- Институт механики сплошных сред УрО РАН, Пермь, Россия
- Выпуск: № 1 (2014)
- Страницы: 31-56
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/355
- DOI: https://doi.org/10.15593/perm.mech/2014.1.31-56
- Цитировать
Аннотация
Ключевые слова
Об авторах
С Д Анферов
Институт механики сплошных сред УрО РАН, Пермь, Россия
Email: anferov@icmm.ru
614013, г. Пермь, ул. Академика Королева, 1 инженер-исследователь лаборатории механики термопластов Института механики сплошных сред УрО РАН
О И Скульский
Институт механики сплошных сред УрО РАН, Пермь, Россия
Email: skul@icmm.ru
614013, г. Пермь, ул. Академика Королева, 1 доктор технических наук, ведущий научный сотрудник лаборатории механики термопластов Института механики сплошных сред УрО РАН
Е В Славнов
Институт механики сплошных сред УрО РАН, Пермь, Россия
Email: slavnov@icmm.ru
614013, г. Пермь, ул. Академика Королева, 1 доктор технических наук, профессор, заведующий лабораторией механики термопластов Института механики сплошных сред УрО РАН
Список литературы
- Славнов Е.В., Петров И.А. Изменение вязкости экструдата рапса в процессе отжима масла // Аграрный вестник Урала. - 2011. - № 6. - С. 42-44.
- Славнов Е.В., Петров И.А., Анферов С.Д. Изменение вязкости экструдата рапса в процессе отжима масла (влияние давления) // Аграрный вестник Урала. - 2011. - № 10. - С. 16-18.
- Славнов Е.В. Изменение проницаемости масличных культур в процессе отжима масла на примере экструдата рапса // Доклады Рос. акад. с.-х. наук. - 2013. - № 3. - С. 58-60.
- Яковлев Д.А. Теоретические исследования процесса отжима сока шнековым рабочим органом с дополнительным дренирующим контуром // Вестник Дон. гос. техн. ун-та. - 2011. - Т. 11. - № 7. - С. 997-1004.
- Яковлев Д.А. Рационализация шнекового рабочего органа для отжима сока из зеленых растений // Вестник Дон. гос. техн. ун-та. - 2010. - Т. 10. - № 4. - С. 556-559.
- Петров И.А., Славнов Е.В. Моделирование шнек-прессового отжима как совокупности процессов течения вязкой несжимаемой смеси и фильтрации жидкости сквозь пористую среду // Вычислительная механика сплошных сред. - 2013. - Т. 6, № 3. - С. 277-285. doi: 10.7242/1999-6691/2013.6.3.31
- Меретуков З.А., Косачев В.С., Кошевой Е.П. Решение задачи нелинейной напоропроводности при отжиме // Известия вузов. Пищевая технология. - 2011. - Т. 323-324. - № 5-6. - С. 62-64.
- Меретуков З.А., Кошевой Е.П., Косачев В.С. Решение дифференциального уравнения отжима // Новые технологии. - 2011. - № 4. - С. 54-57.
- Asgari A., Bagheripour M.H., Mollazadeh M. A generalized analytical solution for a nonlinear infiltration equation using the exp-function method // Scientia Iranica. - 2011. - Vol. 18, iss. 1. - P. 28-35. doi: 10.1016/j.scient.2011.03.004
- Sanavia L., Schrefler B.A., Steinmann P. A formulation for an unsaturated porous medium undergoing large inelastic strains // Computational Mechanics. - 2002. - Vol. 28. - P. 137-151.
- Аптуков В.Н. Модель упруговязкопластического пористого тела // Вестник Перм. ун-та. Математика. Механика. Информатика. - 2008. - № 4. - С. 77-81.
- Wang S.-J., Hsu K.-C. Dynamic interactions of groundwater flow and soil deformation in randomly heterogeneous porous media // Journal of Hydrology. - 2013. - Vol. 499. - No. 30. - P. 50-60. doi: 10.1016/j.jhydrol.2013.06.047
- Model coupling for multiphase flow in porous media / R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, H. Class // Advances in Water Resources. - 2013. - Vol. 51. - P. 52-66. doi: 10.1016/j.advwatres.2012.07.003
- Kondaurov V.I. A non-equilibrium model of a porous medium saturated with immiscible fluids // Journal of Applied Mathematics and Mechanics. - 2009. - Vol. 73. - Iss. 1. - P. 88-102. doi: 10.1016/j.jappmathmech.2009.03.004
- Khoei A.R., Mohammadnejad T. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams // Computers and Geotechnics. - 2011. - Vol. 38, iss. 2. - P. 142-166. doi: 10.1016/j.compgeo.2010.10.010
- Amaziane B., Jurak M., Keko A.Ž. Numerical simulations of water-gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure // Journal of Computational and Applied Mathematics. - 2012. - Vol. 236, iss. 17. - P. 4227-4244. doi: 10.1016/j.cam.2012.05.013
- Sun S., Salama A., El-Amin M.F. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media // Procedia Computer Science. - 2012. - Vol. 9. - P. 661-669. doi: 10.1016/j.procs.2012.04.071
- Fučík R., Mikyška J. Discontinous Galerkin and Mixed-Hybrid Finite Element Approach to Two-Phase Flow in Heterogeneous Porous Media with Different Capillary Pressures // Procedia Computer Science. - 2011. - Vol. 4. - P. 908-917. doi: 10.1016/j.procs.2011.04.096
- Mixed and Galerkin finite element approximation of flow in a linear viscoelastic porous medium / E. Rohan, S. Shaw, M.F. Wheeler, J.R. Whiteman // Computer Methods in Applied Mechanics and Engineering. - 2013. - Vol. 260. - P. 78-91. doi: 10.1016/j.cma.2013.03.003
- El-Amin M.F., Salama A., Sun S. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium // Procedia Computer Science. - 2012. - Vol. 9. - P. 651-660. doi: 10.1016/j.procs.2012.04.070
- Liu J., Mu L., Ye X. A Comparative Study of Locally Conservative Numerical Methods for Darcy's Flows // Procedia Computer Science. - 2011. - Vol. 4. - P. 974-983. doi: 10.1016/j.procs.2011.04.103
- Choquet C. On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media // Journal of Mathematical Analysis and Applications. - 2008. - Vol. 339. - Iss. 2. - P. 1112-1133. doi: 10.1016/j.jmaa.2007.07.037.
- Механика насыщенных пористых сред / В.Н. Николаевский, К.С. Басниева, А.Т. Горбунов, Г.А. Зотов. - М.: Недра, 1970. - 339 с.
- Нигматулин Р.И. Динамика многофазных сред. Ч. 1. - М.: Наука, 1987. - 464 с.
- Albets-Chico X., Kassinos S. A consistent velocity approximation for variable-density flow and transport in porous media // Journal of Hydrology. - 2013. - Vol. 507. - No. 12. - P. 33-51. doi: 10.1016/j.jhydrol.2013.10.009
- Торнер Р.В. Теоретические основы переработки полимеров. - М.: Химия, 1977. - 464 с.
- Скульский О.И., Аристов С.Н. Механика аномально вязких жидкостей. - Екатеринбург: Изд-во УрО РАН, 2004. - 156 с.
- Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. - М.: Наука, 1972. - 392 с.
- Коновалов А.Б. Имитационное моделирование рабочего процесса в прессах с продольной фильтрацией // Технико-технологические проблемы сервиса. - 2012. - Т. 20, № 2. - С. 40-47.
- Reddy J.M. An introduction to nonlinear finite element analysis. - Oxford, 2004. - 482 p.
- Segal Ir.A. Finite element methods for the incompressible Navier-Stokes equations. - Delft University of Technology, 2012. - 80 p.
- Reddy J.M., Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. - Springrer-Verlag, 1991.
- Об альтернативном способе определения предела упругости горных пород в условиях, адекватных пластовым / В.А. Вавилин, Ю.К. Романов, Т.Р. Галиев, Р.Ф. Сулейманов // Георесурсы. - 2008. - № 5. - С. 44-48.