Mathematical modelling of vegetable oil plunger extraction
- Authors: Anferov SD1, Skul’skiy OI1, Slavnov EV1
- Affiliations:
- Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation
- Issue: No 1 (2014)
- Pages: 31-56
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/355
- DOI: https://doi.org/10.15593/perm.mech/2014.1.31-56
- Cite item
Abstract
About the authors
S D Anferov
Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation
Email: anferov@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Research Engineer of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences
O I Skul’skiy
Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation
Email: skul@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Doctor of Technical Sciences, Leading Researcher of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences
E V Slavnov
Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation
Email: slavnov@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Doctor of Technical Sciences, Head of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences
References
- Славнов Е.В., Петров И.А. Изменение вязкости экструдата рапса в процессе отжима масла // Аграрный вестник Урала. - 2011. - № 6. - С. 42-44.
- Славнов Е.В., Петров И.А., Анферов С.Д. Изменение вязкости экструдата рапса в процессе отжима масла (влияние давления) // Аграрный вестник Урала. - 2011. - № 10. - С. 16-18.
- Славнов Е.В. Изменение проницаемости масличных культур в процессе отжима масла на примере экструдата рапса // Доклады Рос. акад. с.-х. наук. - 2013. - № 3. - С. 58-60.
- Яковлев Д.А. Теоретические исследования процесса отжима сока шнековым рабочим органом с дополнительным дренирующим контуром // Вестник Дон. гос. техн. ун-та. - 2011. - Т. 11. - № 7. - С. 997-1004.
- Яковлев Д.А. Рационализация шнекового рабочего органа для отжима сока из зеленых растений // Вестник Дон. гос. техн. ун-та. - 2010. - Т. 10. - № 4. - С. 556-559.
- Петров И.А., Славнов Е.В. Моделирование шнек-прессового отжима как совокупности процессов течения вязкой несжимаемой смеси и фильтрации жидкости сквозь пористую среду // Вычислительная механика сплошных сред. - 2013. - Т. 6, № 3. - С. 277-285. doi: 10.7242/1999-6691/2013.6.3.31
- Меретуков З.А., Косачев В.С., Кошевой Е.П. Решение задачи нелинейной напоропроводности при отжиме // Известия вузов. Пищевая технология. - 2011. - Т. 323-324. - № 5-6. - С. 62-64.
- Меретуков З.А., Кошевой Е.П., Косачев В.С. Решение дифференциального уравнения отжима // Новые технологии. - 2011. - № 4. - С. 54-57.
- Asgari A., Bagheripour M.H., Mollazadeh M. A generalized analytical solution for a nonlinear infiltration equation using the exp-function method // Scientia Iranica. - 2011. - Vol. 18, iss. 1. - P. 28-35. doi: 10.1016/j.scient.2011.03.004
- Sanavia L., Schrefler B.A., Steinmann P. A formulation for an unsaturated porous medium undergoing large inelastic strains // Computational Mechanics. - 2002. - Vol. 28. - P. 137-151.
- Аптуков В.Н. Модель упруговязкопластического пористого тела // Вестник Перм. ун-та. Математика. Механика. Информатика. - 2008. - № 4. - С. 77-81.
- Wang S.-J., Hsu K.-C. Dynamic interactions of groundwater flow and soil deformation in randomly heterogeneous porous media // Journal of Hydrology. - 2013. - Vol. 499. - No. 30. - P. 50-60. doi: 10.1016/j.jhydrol.2013.06.047
- Model coupling for multiphase flow in porous media / R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, H. Class // Advances in Water Resources. - 2013. - Vol. 51. - P. 52-66. doi: 10.1016/j.advwatres.2012.07.003
- Kondaurov V.I. A non-equilibrium model of a porous medium saturated with immiscible fluids // Journal of Applied Mathematics and Mechanics. - 2009. - Vol. 73. - Iss. 1. - P. 88-102. doi: 10.1016/j.jappmathmech.2009.03.004
- Khoei A.R., Mohammadnejad T. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams // Computers and Geotechnics. - 2011. - Vol. 38, iss. 2. - P. 142-166. doi: 10.1016/j.compgeo.2010.10.010
- Amaziane B., Jurak M., Keko A.Ž. Numerical simulations of water-gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure // Journal of Computational and Applied Mathematics. - 2012. - Vol. 236, iss. 17. - P. 4227-4244. doi: 10.1016/j.cam.2012.05.013
- Sun S., Salama A., El-Amin M.F. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media // Procedia Computer Science. - 2012. - Vol. 9. - P. 661-669. doi: 10.1016/j.procs.2012.04.071
- Fučík R., Mikyška J. Discontinous Galerkin and Mixed-Hybrid Finite Element Approach to Two-Phase Flow in Heterogeneous Porous Media with Different Capillary Pressures // Procedia Computer Science. - 2011. - Vol. 4. - P. 908-917. doi: 10.1016/j.procs.2011.04.096
- Mixed and Galerkin finite element approximation of flow in a linear viscoelastic porous medium / E. Rohan, S. Shaw, M.F. Wheeler, J.R. Whiteman // Computer Methods in Applied Mechanics and Engineering. - 2013. - Vol. 260. - P. 78-91. doi: 10.1016/j.cma.2013.03.003
- El-Amin M.F., Salama A., Sun S. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium // Procedia Computer Science. - 2012. - Vol. 9. - P. 651-660. doi: 10.1016/j.procs.2012.04.070
- Liu J., Mu L., Ye X. A Comparative Study of Locally Conservative Numerical Methods for Darcy's Flows // Procedia Computer Science. - 2011. - Vol. 4. - P. 974-983. doi: 10.1016/j.procs.2011.04.103
- Choquet C. On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media // Journal of Mathematical Analysis and Applications. - 2008. - Vol. 339. - Iss. 2. - P. 1112-1133. doi: 10.1016/j.jmaa.2007.07.037.
- Механика насыщенных пористых сред / В.Н. Николаевский, К.С. Басниева, А.Т. Горбунов, Г.А. Зотов. - М.: Недра, 1970. - 339 с.
- Нигматулин Р.И. Динамика многофазных сред. Ч. 1. - М.: Наука, 1987. - 464 с.
- Albets-Chico X., Kassinos S. A consistent velocity approximation for variable-density flow and transport in porous media // Journal of Hydrology. - 2013. - Vol. 507. - No. 12. - P. 33-51. doi: 10.1016/j.jhydrol.2013.10.009
- Торнер Р.В. Теоретические основы переработки полимеров. - М.: Химия, 1977. - 464 с.
- Скульский О.И., Аристов С.Н. Механика аномально вязких жидкостей. - Екатеринбург: Изд-во УрО РАН, 2004. - 156 с.
- Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. - М.: Наука, 1972. - 392 с.
- Коновалов А.Б. Имитационное моделирование рабочего процесса в прессах с продольной фильтрацией // Технико-технологические проблемы сервиса. - 2012. - Т. 20, № 2. - С. 40-47.
- Reddy J.M. An introduction to nonlinear finite element analysis. - Oxford, 2004. - 482 p.
- Segal Ir.A. Finite element methods for the incompressible Navier-Stokes equations. - Delft University of Technology, 2012. - 80 p.
- Reddy J.M., Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. - Springrer-Verlag, 1991.
- Об альтернативном способе определения предела упругости горных пород в условиях, адекватных пластовым / В.А. Вавилин, Ю.К. Романов, Т.Р. Галиев, Р.Ф. Сулейманов // Георесурсы. - 2008. - № 5. - С. 44-48.