Mathematical modelling of vegetable oil plunger extraction

Abstract


The research relates to studying a mixture of grained oilseeds saturated with oil and deformed with plunger molding. Mathematical simulations aim was determination of oil extraction velocity under the set loading conditions. Current statement treats processed material as biphasic mixture. Oilseed cake presented the first phase, which also was material’s porous skeleton. Vegetable oil filling the porous skeleton was the second phase of the mixture. Multiphase dynamics approach was applied in current research for material behavior description. Balance equations were set up for each mixture components. Interfacial volumetric force introduction modelled filtration of liquid. According to former researches, viscous liquid model described properties of porous skeleton as well as properties of vegetable oil. Porous skeleton viscosity assumed to be pressure dependent. Numerical solution of problem was carried out in two-dimensional statement for expression chamber middlesection using finite element approach. The primary variables were constituent’s velocity and pressure fields. Current study used cake pressure dependent porosity model that is common in porous media mechanics. Computational domain discretization was carried out using nine-node rectangular finite elements with linear and quadratic approximation for pressure and velocity fields respectively. Oil saturation distribution along expression chamber height obtained in numerical experiments demonstrates nonlinearity under high external loads. Moreover, the study investigated porosity changes influence on vegetable oil flow during expression.

About the authors

S D Anferov

Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation

Email: anferov@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Research Engineer of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences

O I Skul’skiy

Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation

Email: skul@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Doctor of Technical Sciences, Leading Researcher of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences

E V Slavnov

Institute of Continuous Media Mechanics UrB RAS, Perm, Russian Federation

Email: slavnov@icmm.ru
1, Akademik Korolev str., 614013, Perm, Russian Federation Doctor of Technical Sciences, Head of Laboratory of Thermoplastics Mechanics, Institute of Continuous Media Mechanics Ural Branch of the Russian Academy of Sciences

References

  1. Славнов Е.В., Петров И.А. Изменение вязкости экструдата рапса в процессе отжима масла // Аграрный вестник Урала. - 2011. - № 6. - С. 42-44.
  2. Славнов Е.В., Петров И.А., Анферов С.Д. Изменение вязкости экструдата рапса в процессе отжима масла (влияние давления) // Аграрный вестник Урала. - 2011. - № 10. - С. 16-18.
  3. Славнов Е.В. Изменение проницаемости масличных культур в процессе отжима масла на примере экструдата рапса // Доклады Рос. акад. с.-х. наук. - 2013. - № 3. - С. 58-60.
  4. Яковлев Д.А. Теоретические исследования процесса отжима сока шнековым рабочим органом с дополнительным дренирующим контуром // Вестник Дон. гос. техн. ун-та. - 2011. - Т. 11. - № 7. - С. 997-1004.
  5. Яковлев Д.А. Рационализация шнекового рабочего органа для отжима сока из зеленых растений // Вестник Дон. гос. техн. ун-та. - 2010. - Т. 10. - № 4. - С. 556-559.
  6. Петров И.А., Славнов Е.В. Моделирование шнек-прессового отжима как совокупности процессов течения вязкой несжимаемой смеси и фильтрации жидкости сквозь пористую среду // Вычислительная механика сплошных сред. - 2013. - Т. 6, № 3. - С. 277-285. doi: 10.7242/1999-6691/2013.6.3.31
  7. Меретуков З.А., Косачев В.С., Кошевой Е.П. Решение задачи нелинейной напоропроводности при отжиме // Известия вузов. Пищевая технология. - 2011. - Т. 323-324. - № 5-6. - С. 62-64.
  8. Меретуков З.А., Кошевой Е.П., Косачев В.С. Решение дифференциального уравнения отжима // Новые технологии. - 2011. - № 4. - С. 54-57.
  9. Asgari A., Bagheripour M.H., Mollazadeh M. A generalized analytical solution for a nonlinear infiltration equation using the exp-function method // Scientia Iranica. - 2011. - Vol. 18, iss. 1. - P. 28-35. doi: 10.1016/j.scient.2011.03.004
  10. Sanavia L., Schrefler B.A., Steinmann P. A formulation for an unsaturated porous medium undergoing large inelastic strains // Computational Mechanics. - 2002. - Vol. 28. - P. 137-151.
  11. Аптуков В.Н. Модель упруговязкопластического пористого тела // Вестник Перм. ун-та. Математика. Механика. Информатика. - 2008. - № 4. - С. 77-81.
  12. Wang S.-J., Hsu K.-C. Dynamic interactions of groundwater flow and soil deformation in randomly heterogeneous porous media // Journal of Hydrology. - 2013. - Vol. 499. - No. 30. - P. 50-60. doi: 10.1016/j.jhydrol.2013.06.047
  13. Model coupling for multiphase flow in porous media / R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, H. Class // Advances in Water Resources. - 2013. - Vol. 51. - P. 52-66. doi: 10.1016/j.advwatres.2012.07.003
  14. Kondaurov V.I. A non-equilibrium model of a porous medium saturated with immiscible fluids // Journal of Applied Mathematics and Mechanics. - 2009. - Vol. 73. - Iss. 1. - P. 88-102. doi: 10.1016/j.jappmathmech.2009.03.004
  15. Khoei A.R., Mohammadnejad T. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams // Computers and Geotechnics. - 2011. - Vol. 38, iss. 2. - P. 142-166. doi: 10.1016/j.compgeo.2010.10.010
  16. Amaziane B., Jurak M., Keko A.Ž. Numerical simulations of water-gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure // Journal of Computational and Applied Mathematics. - 2012. - Vol. 236, iss. 17. - P. 4227-4244. doi: 10.1016/j.cam.2012.05.013
  17. Sun S., Salama A., El-Amin M.F. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media // Procedia Computer Science. - 2012. - Vol. 9. - P. 661-669. doi: 10.1016/j.procs.2012.04.071
  18. Fučík R., Mikyška J. Discontinous Galerkin and Mixed-Hybrid Finite Element Approach to Two-Phase Flow in Heterogeneous Porous Media with Different Capillary Pressures // Procedia Computer Science. - 2011. - Vol. 4. - P. 908-917. doi: 10.1016/j.procs.2011.04.096
  19. Mixed and Galerkin finite element approximation of flow in a linear viscoelastic porous medium / E. Rohan, S. Shaw, M.F. Wheeler, J.R. Whiteman // Computer Methods in Applied Mechanics and Engineering. - 2013. - Vol. 260. - P. 78-91. doi: 10.1016/j.cma.2013.03.003
  20. El-Amin M.F., Salama A., Sun S. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium // Procedia Computer Science. - 2012. - Vol. 9. - P. 651-660. doi: 10.1016/j.procs.2012.04.070
  21. Liu J., Mu L., Ye X. A Comparative Study of Locally Conservative Numerical Methods for Darcy's Flows // Procedia Computer Science. - 2011. - Vol. 4. - P. 974-983. doi: 10.1016/j.procs.2011.04.103
  22. Choquet C. On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media // Journal of Mathematical Analysis and Applications. - 2008. - Vol. 339. - Iss. 2. - P. 1112-1133. doi: 10.1016/j.jmaa.2007.07.037.
  23. Механика насыщенных пористых сред / В.Н. Николаевский, К.С. Басниева, А.Т. Горбунов, Г.А. Зотов. - М.: Недра, 1970. - 339 с.
  24. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. - М.: Наука, 1987. - 464 с.
  25. Albets-Chico X., Kassinos S. A consistent velocity approximation for variable-density flow and transport in porous media // Journal of Hydrology. - 2013. - Vol. 507. - No. 12. - P. 33-51. doi: 10.1016/j.jhydrol.2013.10.009
  26. Торнер Р.В. Теоретические основы переработки полимеров. - М.: Химия, 1977. - 464 с.
  27. Скульский О.И., Аристов С.Н. Механика аномально вязких жидкостей. - Екатеринбург: Изд-во УрО РАН, 2004. - 156 с.
  28. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. - М.: Наука, 1972. - 392 с.
  29. Коновалов А.Б. Имитационное моделирование рабочего процесса в прессах с продольной фильтрацией // Технико-технологические проблемы сервиса. - 2012. - Т. 20, № 2. - С. 40-47.
  30. Reddy J.M. An introduction to nonlinear finite element analysis. - Oxford, 2004. - 482 p.
  31. Segal Ir.A. Finite element methods for the incompressible Navier-Stokes equations. - Delft University of Technology, 2012. - 80 p.
  32. Reddy J.M., Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. - Springrer-Verlag, 1991.
  33. Об альтернативном способе определения предела упругости горных пород в условиях, адекватных пластовым / В.А. Вавилин, Ю.К. Романов, Т.Р. Галиев, Р.Ф. Сулейманов // Георесурсы. - 2008. - № 5. - С. 44-48.

Statistics

Views

Abstract - 24

Cited-By


PlumX


Copyright (c) 2014 Anferov S.D., Skul’skiy O.I., Slavnov E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies