АНАЛИЗ МЕЗОСТРУКТУРЫ И КИНЕТИКИ РАЗРУШЕНИЯ ЭЛЕМЕНТОВ СЕТЧАТЫХ КОМПОЗИТНЫХ КОНСТРУКЦИЙ ПРИ ТРАНСВЕРСАЛЬНОМ СЖАТИИ С ИСПОЛЬЗОВАНИЕМ СТОХАСТИЧЕСКОЙ МКЭ-МИКРОМЕХАНИКИ

Аннотация


Проведён анализ мезоструктуры конструктивных элементов сетчатых авиационных конструкций – рёбер, состоящих из чередующихся слоёв равной толщины из однонаправленного углепластика и чистого матричного материала. В экспериментальных исследованиях были получены упругие характеристики однонаправленного углепластика при трехточечном изгибе и трансверсальном сжатии. В результате продольный модуль упругости слоистого композита оказался равным 101 ГПа, модуль сдвига 2,95 ГПа. Также было выполнено численное моделирование мезо- и микромеханики взаимодействия отмеченных слоёв при трансверсальном сжатии вплоть до разрушения. Использован программный комплекс конечно-элементного анализа ANSYS (явная и неявная формулировки). Рассмотрены регулярная и стохастическая укладка волокон в поперечном сечении при сжатии. Диаметры волокон в композитном элементе были измерены на шлифах с помощью цифрового микроскопа Zeiss Axio Observer D1m и равны 5,1 ± 0,8 мкм. Слои с объемной долей волокон, которая составила около 60 %, чередуются со слоями чистой эпоксидной смолы. В качестве микромеханического критерия разрушения при сжатии и растяжении предложено использовать лишь первое главное напряжение в матрице. На первом этапе расчетов была решена задача трансверсального сжатия ячейки с регулярной укладкой волокон (погрешность величины трансверсального модуля упругости составила менее 2 %). На втором этапе была проведена оценка прочности и накоплении микроповреждений при сжатии в модели слоистой структуры со стохастической укладкой волокон. Анализ напряженно-деформированного состояния слоистой мезоструктуры при сжатии позволил объяснить причину того, что слоистое ребро имеет в два раза меньшую трансверсальную прочность, чем однородный углепластик. Расчётные значения пределов прочности при трансверсальном сжа-тии слоистого ребра хорошо согласуются с экспериментальными.

Полный текст

Введение в практику проектирования новых про-бионических сетчатых авиационных конструкций из однонаправленных углепластиков [1–4] требует глубо-кого анализа их механического поведения и разрушения при внешних воздействиях. Сетчатый каркас состоит, как правило, из спиральных и окружных рёбер, работающих в штатных условиях лишь вдоль своей оси [2; 4], реализуя максимальную жёсткость и прочность однонаправленного углепластика (ОУП). В конструкции фюзеляжа самолёта каркас закрыт обшивкой, обеспечивающей гладкую аэродинамиче-скую поверхность [3] и защиту от случайных ударов. Такие низкоскоростные удары градом, бетонной крош-кой при взлёте или падающим инструментом при об-служивании являются наиболее опасными воздействия-ми [5; 6]. Они могут привести к разрушению или частичному повреждению материала силовых рёбер сетчатой конструкции и в итоге к снижению прочности при растяжении или нагрузке, потере устойчивости при сжатии. Удары создают в рёбрах трансверсальные на-пряжения, которые нужно ограничивать из-за низкой прочности ОУП в направлении, перпендикулярном во-локнам. В научной литературе тема прочности при сжатии композитов обсуждается достаточно давно: в системе SCOPUS на запрос compressive strength of composites имеется более 27 000 документов. Однако среди этих документов теме трансверсальной прочности однона-правленных углепластиков посвящено лишь около 50 работ, среди которых можно отметить эксперименталь-ные [7–10] и расчётные [11–14] исследования, фокуси-рующиеся в основном на оценке значений предела прочности при трансверсальном сжатии. Вопрос накоп-ления рассеянных микроповреждений в структуре ком-позита при сжатии был вне поля зрения исследователей. При проектировании защиты ОУП от локальных ударов ключевым является назначение предельно допустимого воздействия на силовое ребро из ОУП с позиции накопления микроповреждений, недостаточно освещённая до настоящего времени в научной литера-туре. ОУП – хорошо известный в механике композитов объект, чаще всего рассматриваемый как трансверсаль-но изотропный, а слой полимерной матрицы можно считать изотропной средой. Макроскопические подходы, в которых конструкционные материалы (и композиты в том числе) рассматриваются как однородные изотропные или анизотропные среды, а их разрушение происходит при выполнении некоторых комплексных критериев, сохраняют свою актуальность на протяжении многих десятилетий [15–17]. Критерии могут быть записаны в виде одного или нескольких выражений, что позволяет отражать тот или иной механизм разрушения. При этом элемент конструкции, как правило, исключается из рас-чётной схемы при выполнении этого критерия [18–20]. Учёт множественности механизмов разрушения волок-нистых композитов вместе с накоплением рассеянных микроповреждений нашел отражение в более сложных подходах [21–25], в которых вводят безразмерные меры повреждений di и записывают условия возникновения и накопления разрывов волокон, матрицы или границы их раздела. Развитие повреждений однозначно связывают с изменением характеристик жёсткости композитов в заданных направлениях. Например, в однонаправленном композите разрывы волокон определяют повреждённость d1 и соответствующее снижение секущего модуля Е1s = E1‧ (1 – d1). Для матрицы или границы раздела «волокно – матрица» повреждённости d2, d3 связывают аналогичным образом с секущими модулями Е2s и G12s. Эти предположения достаточно трудно проверить экспериментально, так как характеристики жёсткости и прочности вдоль волокон ОУП на порядок превосходят механические свойства в трансверсальном и сдвиговом направлениях. В связи с этим детализированные рас-чётные исследования повреждений (микромеханика, метод конечных элементов) становятся по сути единст-венным инструментом подобного анализа [24–27]. Наиболее востребованными в практике расчётов напряженно-деформированного состояния (НДС) во-локнистых композитов являются программные пакеты ANSYS, ABAQUS, LS-DYNA [28–30]. При этом ключе-выми аспектами в них являются следующие: стохастич-ность микроструктуры композита, назначение механи-ческих свойств компонентов, а также характер нагру-жения: статическое или динамическое [27]. В связи с этим данная работа состоит из двух час-тей: экспериментальной и расчётной. В эксперимен-тальной части проведён анализ мезо- и микроструктуры слоистого материала ребра и выполнены исследования механических характеристик при изгибе и трансверсальном сжатии материала ребра в двух направлениях. В расчётной части выполнена оценка упругих характеристик при трансверсальном деформировании ОУП, проведены расчётные исследования напряженного состояния ребра на слоистой мезомодели, а также представлены расчёты кинетики деформирования, накопления повреждений и разрушения слоистой микромодели со стохастическим распределением волокон в поперечном сечении ребра при равномерном сжатии.

Об авторах

С. Б. Сапожников

Южно-Уральский государственный университет (НИУ); Центральный аэрогидродинамический институт (ЦАГИ)

Н. А. Шабурова

Южно-Уральский государственный университет (НИУ)

А. В. Игнатова

Южно-Уральский государственный университет (НИУ)

А. Н. Шаныгин

Центральный аэрогидродинамический институт (ЦАГИ)

Список литературы

  1. Azarov A.V. The problem of designing aerospace mesh composite structures // Mechanics of Solids. - 2018. - Vol. 53. - P. 427-434.
  2. Vasiliev V.V., Barynin V.A., Razin A.F. Anisogrid composite lattice structures - development and aerospace applications // Composite structures. - 2012. - Vol. 94, no. 3. - P. 1117-1127.
  3. Dubovikov E., Fomin V., Glebova M. Damage tolerance and repair of UD-ribs of lattice composite fuselage structures // Proceedings of the 30-th Congress of the International Council of the Aeronautical Sciences. - Deajeon, Korea, 2016.
  4. Totaro G., Gurdal Z. Optimal design of composite lattice shell structures for aerospace applications // Aerospace Science and Technology. - 2009. - Vol. 13, no. 4-5. - P. 157-164. doi: 10.1016/j.ast.2008.09.001
  5. Review of delamination predictive methods for low speed impact of composite laminates / D.J. Elder, R.S. Thomson, M.Q. Nguyen, M.L. Scott // Composite Structures. - 2004. - Vol. 66, no. 1-4. - P. 677-683. doi: 10.1016/j.compstruct.2004.06.004
  6. Kim H., Kedward K.T. Modeling hail ice impacts and predicting impact damage initiation in composite structures // AIAA Journal. - 2000. - Vol. 38, no. 7. - P. 1278-1281. doi: 10.2514/2.1099
  7. Kaddour A.S., Hinton M.J. Maturity of 3D failure criteria for fibre reinforced composites: Comparison between theories and experiments: Part B of WWFE-II // Journal of Composite Materials. - 2013. - Vol. 47, no. 6-7. - P. 925-966. doi: 10.1177/2F0021998313478710
  8. Tsai J.-L., Kuo J.-C. Investigating strain rate effect on transverse compressive strength of fiber composites // Key Engineering Materials. - 2006. - Vol. 306-308. - P. 733-738. doi: 10.4028/www.scientific.net/KEM.306-308.733
  9. Vural M., Kidd T.H., Ravichandran G. Dynamic transverse compressive failure of unidirectional fiber reinforced composites // Proceedings of the 11th International Conference on Fracture 2005 (ICF11). - Turin, Italy, 2005. - Vol. 5. - P. 3632-3636.
  10. Experimental analysis of polymer matrix composite microstructures under transverse compression loading / M. Flores, A. Sharits, R. Wheeler, N. Sesar, D. Mollenhauer // Composites Part A: Applied Science and Manufacturing. - 2022. - Vol. 156. - Paper number 106859. doi: 10.1016/j.compositesa.2022.106859
  11. Micromechanical analysis of transversal strength of composite laminae / L.L. Vignoli, M.A. Savi, P.M.C.L. Pacheco, A.L. Kalamkarov // Composite Structures. - 2020. - Vol. 250. - Paper number 112546. doi: 10.1016/j.compstruct.2020.112546
  12. A survey of numerical models for hail impact analysis using explicit finite element codes / M. Anghileri, L.-M.L. Castelletti, F. Invernizzi, M. Mascheroni // International Journal of Impact Engineering. - 2005. - Vol. 31, no. 8. - P. 929-944. doi: 10.1016/j.ijimpeng.2004.06.009
  13. Multi-scale characterization and modelling of the transverse compression response of unidirectional carbon fiber reinforced epoxy /j. Chevalier, P.P. Camanho, F. Lani, T. Pardoen // Composite Structures. - 2019. - Vol. 209. - P. 160-176. doi: 10.1016/j.compstruct.2018.10.076
  14. Wongsto A., Li S. Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section // Composites Part A: Applied Science and Manufacturing. - 2005. - Vol. 36, no. 9. - P. 1246-1266. doi: 10.1016/j.compositesa.2005.01.010
  15. Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials // Journal of Composite Materials. - 1971. - Vol. 5, no. 1. - P. 58-80.
  16. Whitney J.M., Nuismer R.J. Stress fracture criteria for laminated composites containing stress concentrations // Journal of Composite Materials. - 1974. - Vol. 8, no. 3. - P. 253-265.
  17. Daniel I.M., Ishai O. Engineering mechanics of composite materials. - 2nd ed. - New York: Oxford University Press, 2006. - 411 p.
  18. Hashin Z. Failure criteria for unidirectional fiber composites // Journal of Applied Mechanics. - 1980. - Vol. 47, no. 2. - P. 329-334.
  19. Gama B.A., Gillespie Jr. J.W. Finite element modeling of impact, damage evolution and penetration of thick-section composites // International Journal of Impact Engineering. - 2011. - Vol. 38, no. 4. - P. 181-197. doi: 10.1016/j.ijimpeng.2010.11.001
  20. Fawaz Z., Zheng W., Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours // Composite Structures. - 2004. - Vol. 63, no. 3-4. - P. 387-395. doi: 10.1016/S0263-8223(03)00187-9
  21. Chang F.-K., Chang K.-Y. A progressive damage model for laminated composites containing stress concentrations // Journal of Composite Materials. - 1987. - Vol. 21, no. 9. - P. 834-855. doi: 10.1177/2F002199838702100904
  22. Bonora N. A nonlinear CDM model for ductile failure // Engineering Fracture Mechanics. - 1997. - Vol. 58, no. 1-2. - P. 11-28.
  23. Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. Observations of damage accumulation / F. Gao, L. Boniface, S.L. Ogin, P.A. Smith, R.P. Greaves // Composites Science and Technology. - 1999. - Vol. 59, no. 1. - P. 123-136.
  24. Shahid I., Chang F.-K. An accumulative damage model for tensile and shear failures of laminated composite plates // Journal of Composite Materials. - 1995. - Vol. 29, no. 7. - P. 926-981.
  25. Wu F., Yao W. A fatigue damage model of composite materials // International Journal of Fatigue. - 2010. - Vol. 32, no. 1. - P. 134-138. doi: 10.1016/j.ijfatigue.2009.02.027
  26. Nikishkov Y., Makeev A., Seon G. Progressive fatigue damage simulation method for composites // International Journal of Fatigue. - 2013. - Vol. 48. - P. 266-279. doi: 10.1016/j.ijfatigue.2012.11.005
  27. Shabley A.A., Sapozhnikov S.B., Shipulin L.V. Stochastic micro-meso modeling of cross-ply composites for prediction of softening // Solid State Phenomena. - 2018. - Vol. 284. - P. 120-126. doi: 10.4028/www.scientific.net/SSP.284.120
  28. ANSYS [Электронный ресурс]. - URL: https://www.ansys.com/(дата обращения: 12.08.2022).
  29. ABAQUS/Standard user's manual: version 6.1 / Hibbitt, Karlsson and Sorensen, Inc., 2000.
  30. LS-DYNA R7.0 Keyword user's manual / LSTC, 2013.
  31. ZEISS Thixomet [Электронный ресурс]. - URL: https://www.zeiss.com/corporate/int/home.html (дата обращения: 20.07.2021).
  32. Timoshenko S.P., Gere J.M. Mechanics of Materials. - New York: Van Nostrand Reinhold Co., 1972. - 552 p.
  33. Shcherbakova A.O., Sapozhnikov S.B. Effect of the rounding radius of supports on the accuracy of determining the interlayer shear modulus of reinforced plastics from short-beam bending tests // Mechanics of composite materials. - 2001. - Vol. 37, no. 3. - P. 417-425.
  34. Guseinov K., Sapozhnikov S.B., Kudryavtsev O.A. Features of three-point bending tests for determining out-of-plane shear modulus of layered composites // Mechanics of Composite Materials. - 2022. - Vol. 58, no. 2. - P. 155-168. doi: 10.1007/s11029-022-10020-7
  35. Barbero E.J.Introduction to composite materials design. - 2nd ed. - Boca Raton: CRC Press, 2011. - 520 p.
  36. ANSYS SpaceClaim [Электронный ресурс]. - URL: http://www.spaceclaim.com/ (дата обращения: 20.07.2022).
  37. Taylor D. The theory of critical distances // Engineering Fracture Mechanics. - 2008. - Vol. 75, No 7. - P. 1696-1705.
  38. Bazant Z.P., Planas J. Fracture and size effect in concrete and other quasibrittle materials. - Boca Raton: CRC Press, 1998. - 616 p.
  39. Sapozhnikov S.B., Cheremnykh S.I. The strength of fibre reinforced polymer under a complex loading // Journal of Composite Materials. - 2013. - Vol. 47, no. 20-21. - P. 2525-2552. doi: 10.1177/2F0021998313476328
  40. Напряженно-деформированное состояние и разрушение элементов конструкций с острыми концентраторами напряжений при изгибе / С.Б. Сапожников, М.А. Иванов, С.И. Ярославцев, И.А. Щербаков // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2017. - № 4. - С. 40-55. doi: 10.15593/perm.mech/2017.4.04
  41. Strength and life of composites / S.W. Tsai (Ed). - Stanford: Composites design group, 2008. - 540 p.

Статистика

Просмотры

Аннотация - 111

PDF (Russian) - 97

Cited-By


PlumX


© Сапожников С.Б., Шабурова Н.А., Игнатова А.В., Шаныгин А.Н., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах