МОДЕЛИРОВАНИЕ УПРУГОПЛАСТИЧЕСКОГО РАЗРУШЕНИЯ ПЛАСТИНЫ С ЦЕНТРАЛЬНОЙ ТРЕЩИНОЙ
- Авторы: Астапов Н.С.1, Кургузов В.Д.1
- Учреждения:
- Институт гидродинамики им. М.А. Лаврентьева СО РАН
- Выпуск: № 1 (2023)
- Страницы: 12-25
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/3751
- DOI: https://doi.org/10.15593/perm.mech/2023.1.02
- Цитировать
Аннотация
Прочность квадратной пластины с центральной трещиной при нормальном отрыве ис- следована в рамках подхода Нейбера – Новожилова с помощью модифицированной мо- дели Леонова – Панасюка – Дагдейла, использующей дополнительный параметр – попе- речник зоны пластичности (ширину зоны предразрушения). В качестве модели деформи- руемого твердого тела выбрана модель идеального упругопластического материала, имеющего предельное относительное удлинение. К такому классу материалов относятся, например, низколегированные стали, применяемые в конструкциях, работающих при тем- пературах ниже порога хладноломкости. При наличии сингулярной особенности в поле напряжений в окрестности вершины трещины предлагается использовать двухпараметри- ческий дискретно интегральный критерий прочности. Деформационный критерий разруше- ния формулируется в вершине реальной трещины, а силовой критерий для нормальных напряжений с учетом осреднения формулируется в вершине модельной трещины. Длины реальной и модельной трещин отличаются на длину зоны предразрушения. Подробно проанализированы определяющие уравнения аналитической модели в зависимости от характерного линейного размера структуры материала. Получены простые, пригодные для поверочных расчетов формулы для критической разрушающей нагрузки и длины зоны предразрушения. Выполнено численное моделирование распространения зон пластично- сти в квадратных пластинах при квазистатическом нагружении. В численной модели ис- пользована текущая лагранжева формулировка уравнений механики деформируемого твердого тела, наиболее предпочтительная для моделирования деформирования тел из упругопластического материала при больших деформациях. Методом конечных элементов получена пластическая зона в окрестности вершины трещины. Проведено сравнение ре- зультатов аналитического и численного прогнозирования разрушения пластины при пло- ской деформации. Показано, что результаты численных экспериментов хорошо согласуют- ся с результатами расчетов по аналитической модели разрушения материалов со структу- рой при нормальном отрыве. Построены диаграммы квазихрупкого и квазивязкого разрушения структурированной пластины.
Полный текст
В обзоре экспериментальных работ [1] проводится физико-техническая классификация процессов разру- шения и обсуждение причин возникновения трещин при изготовлении конструкции. Кроме того, в [1] отмечают- ся проблемы построения аналитических моделей про- цесса разрушения в рамках линейной механики разру- шения. В работе [2] прочностные свойства конструкций исследовались с помощью когезионной модели. В рабо- те [3] даны оценки трещиностойкости по границе раз- дела материалов. Отметим, что при использовании ко- гезионной модели [2–4] отсутствуют параметры, опи- сывающие поперечник зоны предразрушения и структуру самой зоны предразрушения. В эксперимен- тальной работе [5] по исследованию распространения трещины нормального отрыва в биматериале «керамика – алюминий» показано, что зона предразрушения для трещины на границе раздела сред, как правило, распо- ложена только в одном более слабом материале ([5, Fig. 5]) и локализована в окрестности этой границы. Такое расслоение в результате лабораторного экспери- мента наблюдалось в работе ([6, p. 801, Fig. 7]). В ре- зультате численного моделирования методом конечных элементов в работе [7] также показано притягивание продвигающейся трещины к границе раздела сред (см. [7, Fig. 3, 7]). В работе [8] при описании процесса разрушения учитываются пределы упругости составляющих компо- зит материалов, но не учитывается их структура. Одна- ко трещины часто оказываются межзеренными, и нали- чие периодической структуры существенно влияет на раскрытие трещин, которое изменяется постепенно гео- метрически упорядоченным образом [1, с. 96]. В рабо- тах [9; 10] показано, что критерии разрушения, учиты- вающие характерный размер структуры материала, по- зволяют «расширить область применения по сравнению с традиционными критериями», хотя «вопрос о том, как этот размер связан с составом, структурой и, возможно, с другими параметрами реального материала, до сих пор не изучен». Поэтому проблемы построения про- стых, пригодных для инженерных расчетов, аналитиче- ских моделей процесса разрушения композитов являют- ся актуальными [11–18]. В работе [18] обосновывается актуальность создания феноменологических моделей для прогнозирования разрушения слоистых материалов. Настоящая работа является естественным продол- жением и обобщением работ [19–23] по исследованию распространения трещины в композите в рамках моди- фицированной модели Леонова – Панасюка – Дагдейла (ЛПД). Методом конечных элементов при квазистати- ческом нагружении последовательно описан процесс распространения пластических зон в окрестности вер- шины трещины. Проведен сравнительный анализ результатов аналитического и численного моделирования разрушения квадратной пластины при плоской дефор- мации. Учет характерного линейного размера материала позволил вывести простые, пригодные в инженерных приложениях соотношения для критической нагрузки и критической длины зоны предразрушения, а также по- строить диаграммы разрушения. Установлено, что скорректированная аналитическая модель предлагает приемлемое прогнозирование критической разрушаю- щей нагрузки для любых длин трещин.Об авторах
Н. С. Астапов
Институт гидродинамики им. М.А. Лаврентьева СО РАН
В. Д. Кургузов
Институт гидродинамики им. М.А. Лаврентьева СО РАН
Список литературы
- Итон Н., Гловер А., Мак-Грат Дж. Особенности разру- шения при изготовлении и эксплуатации сварных конструк- ций // Механика. Новое в зарубежной науке. Механика разру- шения. Разрушение конструкций. – М.: Мир, 1980. – Вып. 20. – С. 92–120.
- The effect of strength mis-match on mechanical performance of weld joints / G. Lin, X.-G. Meng, A. Cornec, K.-H. Schwalbe // Int. J. of Fracture. – 1999. – Vol. 96. – P. 37–54.
- Chandra N. Evaluation of interfacial fracture toughness using cohesive zone model // Compos, Part A: Appl. Sci. Manufact. – 2002. – Vol. 33. – P. 1433–1447.
- Глаголев В.В., Маркин А.А., Фурсаев А.А. Моделиро- вание образования новых материальных поверхностей в про- цессах адгезионного расслоения композита // Вестник Перм- ского национального исследовательского политехнического университета. Механика. – 2018. – № 1. – С. 100–109.
- Effects of plastic constraint on the cyclic and static fatigue behavior of metal/ceramic layered structures / J.J. Kruzic, J.M. McNaney, R.M. Cannon, R.O. Ritchie // Mechanics of materials. – 2004. – Vol. 36. – P. 57–72.
- Pirondi A., Moroni F. An investigation of fatigue failure prediction of adhesively bonded metal/metaljoints // International Journal of Adhesion and Adhesives. – 2009. – Vol. 29. – P. 796– 805.
- Aluru K., Wen F.-L., Shen Y.-L. Direct simulation of fatigue failure in solder joints during cyclic shear // Мaterials and Design. – 2011. – Vol. 32. – P. 1940–1947.
- Kim Y.-J., Schwalbe K.-H. Mismatch effect on plastic yield loads in idealised weldments II. Heat affected zone cracks // Eng. Fract. Mech. – 2001. – Vol. 68. – P. 183–199.
- Сукнев С.В. Нелокальные и градиентные критерии раз- рушения квазихрупких материалов при сжатии // Физ. мезо- мех. – 2018. – Т. 21, № 4. – С. 22–32.
- Сукнев С.В. Применение нелокальных и градиентных критериев для оценки разрушения геоматериалов в зонах кон- центрации растягивающих напряжений // Физ. мезомех. – 2011. – Т. 14, № 2. – С. 67–75.
- Wang P., Qu S. Analysis of ductile fracture by extended unified strength theory // Int. J. Plast. – 2018 – Vol. 104. – P. 196– 213.
- Revil-Baudard B., Cazacu O., Chandola N. Effect of the yield stresses in uniaxial tension and pure shear on the size of the plastic zone near a crack // Int. J. Plast. – 2018. – Vol. 102. – P. 101–117.
- A new approach to model delamination growth in fatigue using the Virtual Crack Closure Technique without re-meshing / N.V. De Carvalho, G.E. Mabson, R. Krueger, L.R. Deobald // Engineering Fracture Mechanics. – 2019. – Vol. 222. – P. 17. doi: 10.1016/j.engfracmech.2019.106614
- Yin Т., Li Q., Li X. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments // Engineering Fracture Mechanics. – 2019. – Vol. 222. – P. 21. doi: 10.1016/j.engfracmech.2019.106740
- Степанова Л.В. Асимптотические поля напряжений у вершины трещины в идеально пластическом материале в услови- ях смешанного нагружения // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2020. – № 3. – С. 73–89. doi: 10.15593/perm.mech/2020.3.08
- Степанова Л.В. Экспериментальное и конечно-эле- ментное определение коэффициентов многопараметрического асимптотического разложения М. Уильямса у вершины трещины в линейно-упругом изотропном материале. Часть II // Вестник Пермского национального исследовательского поли- технического университета. Механика. – 2021. – № 1. – С. 72– 85. doi: 10.15593/perm.mech/2021.1.08
- Глаголев В.В., Девятова М.В., Маркин А.А. Модель трещины поперечного сдвига // Прикладная механика и тех- ническая физика. – 2015. – Т. 56, № 4. – С. 182–192.
- Смирнов С.В., Веретенникова И.А., Вичужанин Д.И. Моделирование расслоения при пластической деформации биметаллического материала, полученного сваркой взрывом // Вычислительная механика сплошных сред. – 2014. – Т. 7, № 4. – С. 398–411.
- Kurguzov V.D., Kornev V.M. Simulation of fracture of elastoplastic materials in mode III: from brittle to ductile // Meccanica. doi: 10.1007/s11012-019-01090-4
- Kornev V.M., Kurguzov V.D., Astapov N.S. Fracture model of bimaterial under delamination of elasto-plastic structured media // Applied Composite Materials. – 2013. – Vol. 20 (2). – P. 129–143. doi: 10.1007/s10443-012-9259-6
- Кургузов В.Д., Корнев В.М. Построение диаграмм квазихрупкого и квазивязкого разрушения материалов на ос- нове необходимых и достаточных критериев // ПМТФ. – 2013. – Т. 54, № 1. – С. 179–194.
- Кургузов В.Д., Астапов Н.С., Астапов И.С. Модель разрушения квазихрупких структурированных материалов // ПМТФ. – 2014. – Т. 55, № 6. – С. 173–185.
- Kurguzov V.D., Shutov A.V. Elasto-plastic fracture criterion for structural components with sharp V-shaped notches // Int. J. Fract. – 2021. – Vol. 228. – P. 179–197. doi: 10.1007/s10704- 021-00530-1
- Леонов М.Я., Панасюк В.В. Развитие мельчайших трещин в твердом теле // Прикл. механика. – 1959. – Т. 5, № 4. – С. 391–401.
- Dugdale D.S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids. – 1960. – Vol. 8. – P. 100–104.
- Панасюк В.В., Андрейкив А.Е., Партон В.З. Основы механики разрушения материалов. – Киев: Наукова думка, 1988. – 488 c.
- Астафьев В.И., Радаев Ю.Н., Степанова Л.В. Нели- нейная механика разрушения. – Самара: Изд-во «Самарский университет», 2001. – 632 c.
- Матвиенко Ю.Г. Модели и критерии механики разру- шения. – М.: Физматлит, 2006. – 328 с.
- Саврук М.П. Коэффициенты интенсивности напряже- ний в телах с трещинами / Механика разрушения и прочность материалов. – Киев: Наукова думка, 1988. – Т. 2. – 619 c.
- Кургузов В.Д. Выбор параметров сетки конечных элементов при моделировании роста трещин гидроразрыва. // Вычисл. мех. сплош. сред. – 2015. – Т. 8, № 3. – С. 254–263.
- Коробейников С.Н. Нелинейное деформирование твердых тел. – Новосибирск: Изд-во СО РАН, 2000. – 262 c.
- MARC 2020. Volume A: Theory and User Information. – Santa Ana (CA): MSC.Software Corporation, 2020. – P. 1061.
- Пестриков В.М., Морозов Е.М. Механика разрушения: курс лекций. – СПб.: ЦОП «Профессия», 2012. – 552 c.
- Сукнев С.В., Новопашин М.Д. Определение локаль- ных механических свойств материалов // Доклады академии наук. – 2000. – Т. 373, № 1. – С. 48–50.
- Новопашин М.Д., Сукнев С.В. Градиентные критерии предельного состояния // Вестник СамГУ, Естественнонауч- ная серия. – 2007. – № 4(54). – С. 316–335.
- Развитие метода корреляции цифровых изображений для изучения процессов деформации и разрушения конструкционных материалов / П.С. Любутин, С.В. Панин, В.В. Титков, А.В. Еремин, Р. Сундер // Вестник Пермского национального исследова- тельского политехнического университета. Механика. – 2019. – No 1. – С. 87–107. doi: 10.15593/perm.mech/2019.1.08