ДИНАМИКА И УСТОЙЧИВОСТЬ ДВУХЗВЕННОГО МАЯТНИКА КАПИЦЫ
- Авторы: Беляев А.К.1, Полякова О.Р.2, Товстик Т.П.1
- Учреждения:
- Институт проблем машиноведения РАН
- Общественная организация научных исследований «Метагалактические Науки» Московской области
- Выпуск: № 2 (2023)
- Страницы: 78-87
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/3783
- DOI: https://doi.org/10.15593/perm.mech/2023.2.07
- Цитировать
Аннотация
Известно, что верхнее, перевёрнутое положение маятника при определённых параметрах вертикальной вибрации его основания является устойчивым. Настоящая работа посвящена динамике модели двухзвенного перевёрнутого маятника в общей нелинейной постановке. Определив границы параметров заданной вибрации основания, при которых перевёрнутый режим является устойчивым, найти границы начальных условий задачи, а именно начальные немалые углы отклонения звеньев маятника от вертикали, приводящие к колебаниям в перевёрнутом положении. В более сложной постановке задачи, предполагающей учёт малых упругих деформаций растяжения – сжатия в стержнях, выявить эффекты влияния сжимаемости стержней на режим колебаний, а также влияние резонанса на устойчивость. Применением законов динамики к подвижным элементам конструкции получена полная нелинейная система уравнений движения маятника в двух постановках для системы с двумя и четырьмя степенями свободы соответственно. Уравнения содержат малый параметр амплитуды вибраций основания, что позволяет применить метод двухмасштабного асимптотического разложения. Метод приводит к системе осреднённых уравнений движения, удобной для анализа влияния параметров. Найдены формы и частоты малых колебаний маятника в зависимости от без-размерного параметра задачи. В нелинейной постановке вычислены максималь-ные отклонения звеньев маятника, дающие устойчивое решение задачи при нуле-вых начальных угловых скоростях. В зависимости от начальной фазы вибрации основания получены границы двух зон устойчивости колебаний – абсолютной и частичной. В абсолютной области устойчивые колебания реализуются для любого значения начальной фазы вибрации основания, в частичной – хотя бы для одного значения. Проведено сравнение динамики маятника без учёта и с учётом сжимае-мости стержней. Результаты представлены на графиках.
Полный текст
Задачей о маятниках и о резонансах, связанных с колебаниями маятников, впервые заинтересовался 300 лет назад Г. Галилей. Первая публикация о стабилиза-ции обращённого маятника под действием вертикаль-ной вибрации точки его шарнирного закрепления при-надлежит А. Стефенсону [1]. Уравнения колебаний ма-ятника с вибрирующей опорой приводят к уравнению Матье, которое решается только в терминах эллипти-ческих функций. П.Л. Капица в 1951 г. [2] использовал предположение о малости амплитуды колебаний опоры и благодаря этому построил теорию расчёта периода колебаний маятника, привёл условие равновесия и оценку точности в предположении малой амплитуды колебаний точки подвеса, нашёл восстанавливающий момент, действующий на маятник, а также рассмотрел задачу с отклонением маятника от верхнего положения равновесия на конечный угол. Теория и эксперименты показали, что состояние равновесия возникает при до-статочно интенсивных колебаниях опоры. Интерес к задачам стабилизации обращённых ма-ятников в различных постановках, начавшийся с 1950-х гг., объясняется ещё и тем, что при проектировании установок, работающих в области физики высоких энергий, для расчёта устойчивости движения частиц требуется решать те же уравнения, что и в задаче об-ращённых маятников [3], при этом поставить экспери-менты с маятником для проверки физических теорий значительно проще. В разные годы многие известные учёные посвящали свои работы описаниям парадоксов, возникающих в задачах, связанных со стабилизацией обращённых ма-ятников под действием вибрации – В.Н. Челомей [4; 5], В.И. Арнольд [6], И.И. Блехман [7; 8], Л.Д. Ландау и Е.М. Лифшиц [9]. Публикации по данной теме продолжаются, как в России, так и за рубежом. В работе [10] найдены усло-вия устойчивости малых колебаний обращённого мно-гозвенного маятника. Современные экспериментаторы добиваются стабилизации двухзвенных и трехзвенных маятников [11–14], продолжают публиковаться теоре-тические работы [15; 16]. Описаны эксперименты ста-билизации в верхнем положении гибких моделей маят-ника, в том числе верёвки [17; 18]. Появляются и другие работы по маятникам, направленные на практическое применение [19; 20]. Условия устойчивости и границы области притяжения устойчивого решения в случае конечных отклонений от положения равновесия полу-чены в работах [21–23] для моделей маятников в виде гибких упругих стержней, в том числе с учётом про-дольных деформаций и влияния первого резонанса продольных волн. Существуют интересные результаты, использую-щие эффект маятника Капицы в задачах с другими по-становками, например работы [24; 25] где вибрациями с периодической нагрузкой обеспечивается устойчивость прямолинейной формы сжатого стержня. Эффект нахо-дит приложение в задачах моделирования движения частиц в малых масштабах [26] и для расчёта парамет-рических систем и механических систем с высокоча-стотным возбуждением [27; 28]. В данной работе мы используем постановку задачи и предположения Капицы о малости амплитуды коле-баний подвеса и рассмотрим как малые, так и конечные углы отклонения двухзвенного маятника. Найденные главные частоты и формы малых колебаний двухзвен-ного обращённого маятника с вибрацией точки подвеса сравниваются с численным решением задачи в геомет-рически нелинейной постановке. Вторая, более слож-ная решаемая задача – определить максимальные начальные отклонения маятника, при которых будет реализовываться эффект Стефенсона – Капицы, когда маятник будет колебаться около верхнего положения равновесия. Данная работа продолжает в двухзвенной поста-новке работы, когда получены условия устойчивости и области притяжения устойчивого решения для различ-ных моделей сжимаемого однозвенного маятника Ка-пицы [29; 30].Об авторах
А. К. Беляев
Институт проблем машиноведения РАН
О. Р. Полякова
Общественная организация научных исследований «Метагалактические Науки» Московской области
Т. П. Товстик
Институт проблем машиноведения РАН
Список литературы
- Stephenson A. On induced stability // Phil. Mag. – 1908. – Vol. 15. – Р. 233–236.
- Капица П.Л. Маятник с вибрирующим подвесом // Бюл. физ. наук. – 1951. – Т. 44(1). – С. 7–20.
- Капица П.Л. Электроника больших мощностей // Усп. физ. наук. – 1962. – Т. 78(2). – С. 181–265.
- Челомей В.Н. О возможности повышения устойчивости упругих систем при помощи вибраций // Доклады АН СССР. – 1956. – Т. 110, № 3. – С. 345–347.
- Челомей В.Н. Парадоксы в механике, вызываемые виб-рациями // Доклады АН СССР. – 1983. – Т. 270, № 1. – С. 62–67.
- Блехман И.И. Вибрационная механика. – М.: Наука, 1994.
- Блехман И.И. Вибрационная механика и вибрационная реология. – М.: ФИЗМАТЛИТ, 2018. – 752 с.
- Арнольд В.И. Математическое понимание природы. – М.: МЦНМО, 2022. – 144 с.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 1. Механика. – М.: Наука, 1988. – 216 с.
- Acheson D.J. A pendulum theorem // Proc. Roy. Soc. Lon-don. – 1993. – Ser. A.V. 443. – Р. 239–245.
- Гордин Я.Д., Грибков В.А. О причине рассогласования расчетных и экспериментальных областей устойчивости обра-щенных стабилизируемых маятников // XII Всероссийский съезд по фундаментальным проблемам теоретической и при-кладной механики. Т. 1: Общая и прикладная механика. – Уфа: РИЦ БашГУ, 2019. – С. 65–68.
- Грибков В.А., Затоненко Ю.В., Гордин Я.Д. Стабилиза-ция обращенного вертикального положения маятника вибро-ускорением (в форме меандра) оси подвеса маятника // XLVI Академические чтения по космонавтике. – Издательство МГТУ им. Н. Э. Баумана. – Москва. – 2022. – Т. 4. – С. 470–473.
- Acheson D.J., Mullin T. Upside-down pendulums // Na-ture. – 1993. – Vol. 366. – P. 215–216.
- Эксперимент по раскачиванию двойного маятника управлением с обратной связью / Я. Аврейцевич, Г. Василев-ский, Г. Кудра, С.А. Решмин // Известия Российской академии наук. Теория и системы управления. – 2012. – № 2. – С. 10–16.
- Ананьевский И.М. Управление трехзвенным перевер-нутым маятником в окрестности положения равновесия // ПММ. – 2018. – Т. 82, вып. 2. – С. 149–155.
- Грибков В.А., Хохлов А.О. Устойчивость тройного ин-вертированного физического маятника из статьи академика В.Н. Челомея 1983 г. // Вестник МГТУ им. Н.Э. Баумана. Сер.: Машиностроение. – 2015. – № 6. – C. 33–49.
- Васильков В.Б. Влияние вибрации на нелинейные эф-фекты в механических системах: дис. … д-ра техн. наук. – СПб, 2008 / ИПМаш. РАН. СПб. – 2009. – 210 с.
- Vasilkov V.B. Experimental investigation of nonlinear ef-fects in a vibrating rope // Advanced Problems in Mechanics. Pro-ceedings of XXXI Intern. Summer School. – 2004. – St. Peters-burg: IPME RAS. – Р. 383–387.
- Li M., Aoyama T., Hasegawa Y. Gait modification for im-proving walking stability of exoskeleton assisted paraplegic patient. – Robomech J. – 2020. – Vol. 7, no. 21. doi: 10.1186/s40648-020-00169-y
- О моделировании пляски проводов воздушных ЛЭП и параметрическом анализе эффективности маятниковых гасите-лей / И.И. Сергей, А.А. Виноградов, А.Н. Данилин, Н.Н. Курдюмов // Вестник Пермского национального исследо-вательского политехнического университета. Механика. – 2018. – № 4. – С. 256–265. doi: 10.15593/perm.mech/2018.4.23
- Устойчивость вертикального стержня на вибрирующей опоре / Н.Ф. Морозов, А.К. Беляев, П.Е. Товстик, Т.П. Товстик // Доклады Академии наук. – 2018. – Т. 482, № 2. – С. 155–159. doi: 10.31857/S086956520003166-5
- Кулижников Д.Б., Товстик П.Е., Товстик Т.П. Области притяжения в обобщенной задаче Капицы // Вестник Санкт-Петербургского Университета. Математика. Механика. Астро-номия. – 2019. – Т. 6(64), вып. 3. – С. 482–492.
- Classical Kapitsa’s problem of stability of an inverted pen-dulum and some generalizations / A.K. Belyaev, N.F. Moro¬zov, P.E. Tovstik [et al.] // Acta Mechanica. – 2021. – Vol. 232. – P. 1743–1759. doi: 10.1007/s00707-020-02907-0
- Сейранян А.А., Сейранян А.П. Задача Челомея о стаби-лизации статически неустойчивого стержня с помощью вибра-ции // Прикладная математика и механика. – 2008. – Т. 72, № 6. – С. 898–903.
- Belyakov A.O., Seyranian A.P. Stability Boundary Ap-proximation of Periodic Dynamics // Nonlinear Dynamics of Struc-tures, Systems and Devices: Proceedings of the 1st International Nonlinear Dynamics Conference, NODYCON 2019: 1, Rome, 17-20 февраля 2019 года. – Rome, 2020. – P. 13–23. doi: 10.1007/978-3-030-34713-0_2
- A microscopic Kapitza pendulum / C.J. Richards, T.J. Smart, P.H. Jones [et al.] // Scientific Reports. – 2018. – Vol. 8, no.13107. doi: 10.1038/s41598-018-31392-8
- Guha P., Garai S. Integrable modulation, curl forces and parametric Kapitza equation with trapping and escaping // Nonlinear Dynamics. – 2021. – Vol. 106. – P. 3091–100. doi: 10.1007/s11071-021-06947-6
- Thomsen J.J. Special Effects of High-Frequency Excitation. In: Vibrations and Stability. Springer. – 2021. – P. 387–447. doi: 10.1007/978-3-030-68045-9_7
- Беляев А.К., Полякова О.Р., Товстик Т.П. Модельная задача устойчивости колебаний перевернутого сжимаемого в продольном направлении маятника на вибрирующем основании // Динамические и технологические проблемы механики кон-струкций и сплошных сред: материалы XXVIII Международно-го симпозиума им. А.Г. Горшкова. – 2022. – М.: ООО «ТРП», 2022. – Т. 2. – С. 162–167.
- Belyaev A.K., Polyakova O.R., Tovstik T.P. The Effect of Longitudinal Oscillations Resonance on Stability and Domains of Attraction in the Generalized Kapitsa Problem. Solid Mechanics, Theory of Elasticity and Creep. – 2023. – Vol 185. – P. 93–100. doi: 10.1007/978-3-031-18564-9_7
- Справочник по специальным функциям / под ред. М. Абрамовица, И. Стиган. – М.: Наука, 1979. – 830 с.
- Боголюбов Н.Н., Митропольский Ю.А. Асимпто-тические методы в теории нелинейных колебаний. – М.: ФИЗ-МАТЛИТ, 1958. – 408 с.