ТОЧНОЕ РЕШЕНИЕ ЗАДАЧИ ОБ АКУСТИКЕ В ПРОИЗВОЛЬНОЙ МНОГОСЛОЙНОЙ СРЕДЕ ПРИ КОНТАКТНОМ ВЗАИМОДЕЙСТВИИ С КЛИНОВИДНЫМ ШТАМПОМ
- Авторы: Бабешко В.А.1, Евдокимова О.В.1, Бабешко О.М.1, Евдокимов В.С.1
- Учреждения:
- Кубанский государственный университет
- Выпуск: № 4 (2023)
- Страницы: 5-11
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/3880
- DOI: https://doi.org/10.15593/perm.mech/2023.4.01
- Цитировать
Аннотация
В работе впервые изучается поведение точного решения контактной задачи для штампа клиновидного в плане формы в анизотропной слоистой среде. Рассмотрена кон- тактная задача о действии клиновидного, с прямым углом в плане, жесткого штампа на поверхность многослойной анизотропной среды. Случай остроугольного в плане штампа некоторым преобразованием сводится к рассматриваемому. Штамп предполагается дей- ствующим на многослойную среду без трения. Возможны случаи статического и динамиче- ского воздействия, вызываемого гармоническим колебанием штампа. Основное внимание уделено анализу поведения поверхности анизотропной слоистой среды вне зоны контакта. Построены формулы, описывающие поведение поверхности в дальней зоне и приведен пример вычисления необходимых параметров для их применения. Рассматриваемая сме- шанная задача приводится к решению двумерного интегрального уравнения Винера – Хопфа, преобразование Фурье, ядра которого представляют отношение двух аналитиче- ских функций. Изотропный случай наличия отношения двух целых функций в представле- нии ядра недавно был исследован универсальным методом моделирования, подсказав- шим переход к малоизученному анизотропному случаю. В пространственных контактных задачах исследование проводится численными методами, малоэффективными для анизо- тропных сред. Точное решение удавалось построить лишь в случаях одномерных, или сводящихся к ним, интегральных уравнений. Разработанный в статье метод позволяет, наряду со статическими задачами, изучать акустические свойства поверхности вне зоны контакта штампа со средой в динамическом случае, которые имеют малоизученную спе- цифику поведения по секторам. Впервые решенное двумерное интегральное уравнения Винера – Хопфа может быть использовано в задачах распространения радиоволн, при конструировании элементной базы радиоэлектроники, в проблеме прочности в механике, в многочисленных других важных областях.
Полный текст
Анизотропия свойственна многим материалам, применяемым в инженерной практике [1], электрони- ке [2], кристаллофизике [3], науках о Земле [4; 5] и во многих других областях. Анизотропия всегда возникает в задачах при рассмотрении движущегося объекта в упругой среде [6; 7]. Смешанные задачи математиче- ской физики, к числу которых относится ряд задач о распространении радиоволн [8; 9], контактные зада- чи [10; 11], задачи акустики [12; 13], теории прочности [14] и других областей, часто приводятся к решению интегральных уравнений Винера – Хопфа [15]. Этим методом удается точно решать только одномерные смешанные задачи, или некоторые пространственные, сводящиеся к одномерным. Двумерные смешанные за- дачи решаются приближенно, асимптотическими [16] или численными методами [17], в частности, используя для их развития точные решения одномерных инте- гральных уравнений Винера – Хопфа. В случае анизо- тропных сред эти методы неэффективны [10]. Прогресс в этой области может дать построение точного решения двумерного интегрального уравнения Винера – Хопфа в анизотропном случае. В работе [18] универсальным методом моделирования для случая изотропной среды впервые было построено точное решение двумерного интегрального уравнения Винера – Хопфа в первом квадранте. В настоящей работе другим подходом, раз- витым в [19], впервые построено точное решение инте- грального уравнения Винера – Хопфа в анизотропном случае. Как частный случай, анизотропные материалы включают композитные материалы и кристаллы, моно- кристаллы с изменяющимися свойствами при горизон- тальном повороте осей координат. Также к ним отно- сятся волокнистые и пленочные материалы, армирован- ные пластики, пьезокварц, графит и другие природные и искусственно созданные материалы с горизонтально изменяющимися свойствами.Об авторах
В. А. Бабешко
Кубанский государственный университет
О. В. Евдокимова
Кубанский государственный университет
О. М. Бабешко
Кубанский государственный университет
В. С. Евдокимов
Кубанский государственный университет
Список литературы
- Ашкенази Е.К. Анизотропия машиностроительных ма- териалов. – Л.: Машиностроение, 1969. – 362 с.
- Ноздрев В.Ф., Федорищенко Н.В. Молекулярная аку- стика. – М.: Высшая школа, 1974. – 288 с.
- Акустические кристаллы / А.А. Блистанов, В.С. Бонда- ренко, Н.В. Переломова [и др.]. – М.: Наука, 1982. – 632 с.
- Магницкий В.А. Внутреннее строение и физика Зем- ли. – М.: Наука, 2006. – 390 с.
- Davis A.M.J. Continental shelf wave scattering by a semiinfinite coastline // Geophys. Astrophys. Fluid Dyn. – 1987. – Vol. 39. – P. 25–55.
- Ерофеев В.И., Лисенкова Е.Е., Царев И.С. Динамиче- ское поведение балки, лежащей на обобщенном упругом ос- новании, с движущейся нагрузкой // ПММ. – 2021. – Т. 85, № 2. – С. 193–209.
- Aleksandrov V.M., Goryacheva I.G., Torskaya E.V. Sliding contact of a smooth indenter and a viscoelastic half-space (3D problem) // Doklady Physics. – 2010. – Vol. 55, № 2. – P. 77–80.
- Фок В.А. О некоторых интегральных уравнениях матема- тической физики // Матеем. сборн. – 1944. – № 14, вып. 1, 2, 3.
- Sautbekov S., Nilsson B. Electromagnetic scattering theory for gratings based on the Wiener-Hopf method // AIP Conf. Proc. – 2009. – № 1106. – Р. 110–117.
- Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. – М.: Наука, 1984. – 256 с.
- Freund L.B. Dynamic Fracture Mechanics. – Cambridge, UK. Cambridge University Press, 1998. – 558 p.
- Кулеш М.А., Матвеенко В.П., Шардаков И.Н. О рас- пространении упругих поверхностных волн в среде Коссера // Доклады Академии наук. – 2005. – Т. 405, № 2. – С. 196–198.
- Achenbach J.D. Wave propagation in Elastic Solids // North-Holland Series in Applied Mathematics and Mechanics. – Amsterdam: North-Holland, 1973. – 425 p.
- Abrahams I.D. Аn application of Padé approximates to Wiener-Hopf factorization // IMA J. Appl. Math. – 2000. – Vol. 65. – P. 257–281.
- Матвеенко В.П., Федоров А.Ю., Шардаков И.Н. Ана- лиз сингулярности напряжений в особых точках упругих тел из функционально градиентных материалов // Доклады Ака- демии наук. – 2016. – Т. 466, № 1. – С. 38–42.
- Нобл Б. Метод Винера – Хопфа ИЛ, 1962. – 280 c.
- Бабешко В.А., Сыромятников П.В. К проблеме исследо- вания локализации и резонансов в электроупругом анизотропном слое // Доклады РАН. – 1999. – Т. 367, № 2. – С. 186–190.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Точ- ное решение универсальным методом моделирования кон- тактной задачи в четверти плоскости многослойной среды // ПММ. – 2022. – Т. 86, № 5. – С. 628–637.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента для интегральных уравнений контактных задач в клиновидной области // Журнал прикладной механики и технической физики. – 2017. – Т 58, № 2. – С. 133–140. doi: 10.1134/S0021894417020146
- Федорюк М.В. Метод перевала. – М:. Наука, 1977. – 368 с.