MICROSTRUCTURAL FEATURES, MECHANICAL PROPERTIES AND HEAT TREATMENT OF BAINITIC STEEL

Abstract


The analysis of scientific references on intermediate transformation is presented in article. Material of various periods of research of bainite transformation in the different countries is generalized. The main distinctions between the lower and top bainite are revealed, and also advantages of one morpho- logy of a bainite over another are shown. Some types of bainite structure at various methods of research of structure are illustrated. The terminological analysis of use of the term "carbide-free bainite" is carried out. Use of various names of structure which turns out as a result of intermediate transformation without formation of carbides is revealed. In various references what bainite is confirmed can be carbide-free bainite. The aspiration to receive carbide-free bainite is deals with the raised complex of mechanical properties at this structure. Realization of such structure is possible in strict observance of technology of heat treatment. Therefore in article ways of heat treatment are analysed. It is revealed from scientific literature that carbide-free bainite it is possible to receive as a result of continuous cooling and isothermal holding at addition in steel of elements which allow to exclude carbide forming. Distinguish silicon and aluminum from such elements. The last decade the perspective direction is Quenching & Partitioning treatment from which formation of bainite and martensite structure with various maintenance of this or that component results. In article carrying out the modes of heat treatment on the traditional furnace equipment is also considered. It became known that some scientists research the structure received when cooling from an intercritical interval.

Full Text

Общие представления о бейните Как известно, идея создания структуры бейнита зародилась в ХХ в. [1, 2], но интерес к исследованию промежуточного превращения не исчезает, а только еще больше возрастает в настоящее время [3-5]. Считается, что бейнит - это один из видов структурного состояния, которое возникает при превращении аустенита. Кроме того, при превращении аустенита в бейните выделяются карбиды [1, 6, 7]. Исследователи выделяют ряд особенностей промежуточного превращения, которые указывают на его аналогию, с одной стороны, с диффузионным превращением, а с другой - с мартенситным [1, 6-8]. Ученые соглашаются с тем, что можно выделить два вида бейнита: верхний и нижний [1, 6-8], хотя существуют классификации [8-12], в которых бейнит может представать в различных морфологических сочетаниях феррита и цементита. В работе [13] поднимается вопрос о правильном термине для обозначения того, что образуется в результате промежуточного превращения. Предлагается использовать не какой-либо конкретный термин, например «бейнит», а говорить о промежуточной структуре с указанием фаз. Продолжая тему бейнита, нужно сказать, что верхний бейнит образуется преимущественно при температурах 500-350 °С, а нижний - при температурах 350-200 °С [1, 6-8]. Результаты исследований, проведенных авторами работы [14], подтверждают ранние представления о морфологии бейнита, полученного при различных режимах термической обработки. Верхний бейнит имеет перистое, или «кудреватое», строение (рис. 1, а). Нижний бейнит, в классическом представлении, является игольчатым (рис. 1, б), но в современных источниках также часто упоминается и реечная морфология бейнита (рис. 1, в). Как говорилось ранее, в бейните происходит выделение карбидов цементитного типа. В верхнем бейните карбидные частицы расположены между пластинами феррита или по границам и внутри пластин, а в нижнем бейните карбидные частицы одной кристаллографической ориентировки находятся только внутри пластин a-фазы. а б в в Рис. 1. Микроструктура различных морфологических типов бейнита: а - верхний бейнит; б - нижний игольчатый бейнит; в - нижний реечный бейнит (´1000) Игольчатый феррит, или бескарбидный бейнит В настоящее время кроме названия «бейнит», используют термин «бескарбидный бейнит» (БКБ). Такой бейнит отличается от классического тем, что в рейках бейнитного феррита и по его границам практически полностью отсутствуют цементитные частицы [8]. Бескарбидный бейнит еще называют игольчатым ферритом, он имеет форму пакета. Бескарбидным может быть не только нижний бейнит, но и верхний. В связи с этим существует классификация Брамфита и Спира, по которой верхний бейнит может иметь еще три морфологии [9]. Термин «бескарбидный бейнит» распространен не только в отечественной, но и в зарубежной литературе [15-17]. Получением и исследованием структуры бескарбидного бейнита занимаются в России (Пермь - доктор техническтх наук, профессор ПНИПУ Ю.Н. Симонов с сотрудниками, Екатеринбург - академик РАН В.М. Счастливцев и кандидат технических наук, старший научный сотрудник Института физики металлов УРО РАН А.Ю. Калетин с сотрудниками), Испании, Индии, Китае и других странах [4-5, 15-17]. Получение игольчатого феррита возможно в сталях и сплавах с различным содержанием углерода и легирующих элементов [3, 14, 18, 19]. Комплексное легирование стали определенными химическими элементами позволяет практически полностью подавить процессы образования карбидов в бейнитном феррите. Известно, что наличие в структуре мелкодисперсного бейнитного феррита без выделения карбидов цементитного типа в сочетании со стабильным остаточным аустенитом обеспечивает получение высокого комплекса прочности и вязкости конструкционных сталей [20-22]. Основными легирующими элементами для подавления выделения цементитных частиц являются кремний и алюминий [21, 23-25]. Кроме кремния и алюминия, которые являются недефицитными элементами [27], добавляют иногда кобальт и никель [3, 26], но эти элементы относятся к особо дефицитным [27]. Также в сталь добавляют молибден, ниобий, хром, марганец, ванадий, которые позволяют повысить устойчивость переохлажденного аустенита [14, 28, 29]. Соответственно, конечная структура стали будет содержать большее количество аустенита, который должен быть обогащен углеродом, чем бейнитный феррит [21, 23, 28]. Перечисленные выше легирующие элементы смещают интервал промежуточного превращения в сторону более низких температур. При достаточном содержании легирующих элементов в стали интервалы диффузионного и промежуточного превращений разделяются по температурной шкале [7]. Бескарбидным может быть как нижний, так и верхний бейнит. Наиболее перспективной структурой является нижний бескарбидный бейнит (НБКБ) [3, 14, 30]. Считается, что верхний бейнит является неблагоприятной и нежелательной структурой по сравнению с нижним бейнитом. Верхний бейнит имеет более грубое строение, что отрицательно сказывается на свойствах сталей [30], а нижний бейнит благоприятно влияет на механические характеристики. Из литературных источников известно, что в последнее время ученые стремятся получать структуру НБКБ в заготовках достаточно большого сечения - до 50-100 мм [3, 4]. Экспериментально выявлено, что первым необходимым условием формирования структуры нижнего бескарбидного бейнита при непрерывном замедленном охлаждении заготовок и деталей достаточно большого сечения является обеспечение высокой устойчивости переохлажденного аустенита в области перлитного превращения [14]. Второе условие получения НБКБ - высокая устойчивость аустенита в бейнитной области. Здесь необходимо сделать ряд уточнений: 1. Для получения структуры НБКБ в широком диапазоне скоростей охлаждения устойчивость аустенита в бейнитной области должна быть хоть и высокой, но ниже, чем в перлитной области. Другими словами, перлитная область не должна закрывать область бейнитного превращения или интенсивность превращения в области перлитного превращения должна быть такой низкой, чтобы доля образующихся избыточных структурных составляющих (феррита и/или перлита) была пренебрежимо мала. 2. Границей между областями существования верхнего и нижнего бейнита большинство исследователей считают интервал 350-450 °С, а средней температурной границей - 400 °С [7, 31-33]. В связи с этим температура начала бейнитного превращения не должна превышать 400 °С, чтобы гарантировать получение именно НБКБ. В работе [14] приведен пример структуры нижнего и верхнего бескарбидного бейнита. Структура НБКБ (рис. 2, а) представляет собой чередующиеся пластины бейнитного феррита и остаточного аустенита, собранные в пакеты. По морфологии верхний бескарбидный бейнит (ВБКБ) (рис. 2, б) существенным образом отличается от НБКБ: для ВБКБ характерны области неправильной формы с угловатыми границами. На рис. 2, в, г, приведена структура НБКБ, исследованная при помощи трансмиссионного электронного микроскопа (ТЭМ) [14]. Эти результаты полностью подтверждают данные рис. 2, а, кроме того, можно сказать, что поперечный размер пластин феррита составляет 200-800 нм, а остаточного аустенита 50-150 нм. а б в г Рис. 2. Микроструктура НБКБ (а, в, г) и ВБКБ (б) в стали 25ХН3МФС; сканирующая электронная микроскопия (а, б) и ТЭМ (в, г) изображения; в - светлое поле, г - темное поле в рефлексе [200]g Термическая обработка на бескарбидный бейнит Термическую обработку на бескарбидный бейнит проводят на двух типах оборудования: в печах-ваннах [34, 35] и традиционных термических печах с окислительной атмосферой [3, 14, 30]. Использование печей-ванн дает преимущество, так как в них осуществляется равномерный нагрев и охлаждение до температур изотермической выдержки. Печи с окислительной атмосферой более просты в использовании и не требуют дополнительного обслуживания, поэтому процесс термической обработки становится более простым и относительно дешевым. Как отмечалось ранее, для того чтобы получить бескарбидный бейнит, нужно специальное легирование. Легирование позволяет повысить устойчивость аустенита, а также сдвинуть область нормального превращения вправо, чтобы избежать получения в структуре избыточных фаз - перлита и феррита. На основании этого, обращаясь к литературным источникам [3, 14], необходимо отметить, что получение бескарбидного бейнита возможно в результате непрерывного охлаждения на воздухе и с печью с температуры аустенитизации (Тауст) (рис. 3, а). Также авторы работы [19] показывают возможность получения БКБ- структуры при охлаждении с печью сталей с различным химическим составом. К тому же в статье показана тенденция увеличения доли остаточного аустенита при добавлении в сталь большего количества алюминия с одними параметрами охлаждения. Тем самым доказана возможность получения структуры БКБ при непрерывном охлаждении с печью. а б в Рис. 3. Схематическое изображение режимов термической обработки с непрерывным охлаждением с Тауст (а) и из МКИТ (б) и изотермической закалкой с Тауст и из МКИТ (в) Интерес также вызывает следующий режим термической обработки: непрерывное охлаждение на воздухе и с печью из межкритического интервала температур (МКИТ) (рис. 3, б) [25, 36]. Такая термическая обработка практически не встречается в отечественной литературе, но в зарубежной это нередкий случай, особенно для дилатометрических исследований [25, 36]. Наряду с бейнитом, в структуре сохраняется некоторое количество равномерно распределенной ферритной составляющей. Совокупность БКБ, феррита и достаточного количества остаточного аустенита может благоприятно влиять на характеристики трещиностойкости [37]. Классическим вариантом термической обработки на структуру БКБ является изотермическая закалка [3]. Правильный подход к назначению температуры изотермической выдержки является следующим: проведение дилатометрических исследований, построение изотермических диаграмм, нахождение температуры начала бейнитного превращения, а затем проведение опытных режимов. Такому принципу следуют в каждой стране, которая занимается разработкой новых сталей для получения необходимой структуры. Итак, изотермическая закалка может проводиться с Тауст и из МКИТ (рис. 3, в). Температуру изотермической выдержки (ИЗО) стараются назначить таким образом, чтобы при этой температуре превращение аустенита в нижний бейнит прошло наиболее полно. Дилатометрические исследования являются важным компонентом в экспериментальном процессе. Результаты дилатометрических исследований позволяют найти все критические точки, при которых происходят фазовые превращения, чтобы назначить опытные режимы и не попасть в область верхнего бейнита, а получить только нижний бескарбидный бейнит [24, 14]. Изотермическая закалка из МКИТ, как и непрерывное охлаждение из МКИТ, приводит к образованию смешанной феррито-бейнитной структуры [25]. Кроме температуры ИЗО важным параметром при такой обработке (см. рис. 3, в) является время выдержки при температуре ИЗО [3]. Это время влияет на полноту превращения аустенита в бейнит. Может быть так, что в процессе длительной выдержки, когда уже превращение закончилось, происходит выделение карбидов, что крайне отрицательно сказывается на устойчивости бейнитного аустенита и, как следствие, на уровне характеристик механических свойств. На длительность выдержки может повлиять устойчивость аустенита. Если аустенит недостаточно стабилен, то может произойти практически полное превращение аустенита в бейнит в процессе небольших выдержек. Если стабильность аустенита высокая, то превращение может происходить длительное время и существенная часть так и не превратится в бейнит, но может превратиться в высокоуглеродистый пластинчатый мартенсит при окончательном охлаждении до комнатной температуры. Получение смешанной бейнито-мартенситной структуры В последнее десятилетие перспективной считают термическую обработку, в результате которой происходит образование бейнито-мартенситной структуры. Такую термическую обработку в зарубежных источниках называют Quenching and Partitioning (Q&P) [26, 35, 37-42]. Получением смешанной структуры занимаются не только за рубежом, но и в России [35, 42]. В целом суть процесса следующая: нужно, чтобы в результате закалки образовался мартенсит, а в процессе выдержки прошло промежуточное превращение. На рис. 4 изображены схемы возможных режимов Q&P-обработки. Более точное объяснение схем а и б при закалке с температуры аустенитизации на рис. 4 можно представить с помощью данных работы [42]. В этой статье полностью описан процесс Q&P-обработки. Стоит выделить основные положения, которыми необходимо руководствоваться при выполнении термической Q&P-обработки: 1) закалку проводят таким образом, чтобы происходило только образование мартенсита; 2) охлаждение проводят до температуры подстуживания Тп, которая регламентирует объемные доли мартенсита и бейнита, образующихся в структуре; 3) изменение температуры нагрева в области изотермического распада позволяет получать бейнит различной морфологии и изменять степень отпуска пересыщенного твердого раствора; 4) время изотермической выдержки выбирается таким образом, чтобы полностью происходили процессы распада переохлажденного аустенита и отпуска полученного ранее мартенсита. Исследования по определению оптимального соотношения в смешанной структуре мартенситной и бейнитной фаз показывают, что увеличение количества бейнита приводит к уменьшению характеристик прочности и твердости с одновременным увеличением характеристик трещиностойкости [40]. Если в стали сохраняется до 60 % бейнитной составляющей, то по показателям трещиностойкости такая сталь незначительно уступает стали с полностью бейнитной структурой. При этом в структуре стали сохраняется мартенситный каркас, обеспечивающий высокие прочностные характеристики. Большое влияние на механические свойства сталей оказывает морфология бейнита. Структура нижнего бейнита обладает значительным сопротивлением усталостному разрушению. Если в стали образуется структура верхнего бейнита с грубыми выделениями карбидной фазы, то сопротивление распространению трещин значительно снижается. Как обсуждалось ранее, если закалку проводить из МКИТ (см. рис. 4), то происходит выделение ферритной избыточной фазы, которая вносит свой вклад в уровень свойств стали [37]. а б в Рис. 4. Схематическое изображение режимов термической Q&P-обработки: а - изотермическая закалка с подстуживанием; б - изотермическая закалка с некоторой выдержкой в мартенситном интервале; в - изотермическая закалка ниже температуры начала мартенситного превращения Также хочется отметить, что для поддержания нужной температуры в интервале мартенситного превращения используются селитровые ванны [35]. Если не использовать в этом случае печи-ванны, то процесс контроля температуры становится затруднительным. Отдельно можно выделить режимы (рис. 4, в), которые стречаются в литературе реже и распространены меньше, чем остальные, но такие способы обработки являются также перспективными, так как можно получать структуру, состоящую из бейнита, мартенсита и остаточного аустенита с определенным процентным соотношением [24]. Единственным условием является проведение дилатометрических исследований для определения конкретного процентного соотношения. Чтобы получить бейнит, нужна обычно длительная выдержка, но всё зависит от химического состава стали и бейнитного интервала температур. Чаще всего минимальная устойчивость переохлажденного аустенита (так называемый «нос» С-образной кривой бейнитного образования на диаграммах превращения переохлажденного аустенита) находится выше Мн [3, 42]. Свойства структуры, содержащей бейнит или БКБ Как отмечалось выше, для повышенных свойств структуры БКБ необходимо достаточное количество остаточного аустенита (Аост). С увеличением Аост происходит повышение вязкости стали, как это показано в табл. 1. Прочностные характеристики остаются практически на одном уровне. Механические свойства приведены в других статьях [15, 16, 43], а также в табл. 2. Таблица 1 Механические свойства и содержание аустенита в сталях с различным химическим составом после непрерывного охлаждения со скоростью 5 °С/мин [19] Сталь σВ, МПа KCU, МДж/м2 Твердость HRC Аост, % 40Х2Н2МА 1110 0,3 36 6 15Х2Н3МФ 1150 1,33 37 14 14Х2Н2ГМФ 1090 1,25 36 15 10Х2Н3ГМ 1240 1,10 38 9 40Х2Н2МЮ 1220 1,00 38 24 Таблица 2 Механические свойства стали 29Х2Г2С2МФ после различных режимов обработки [30] Режим обработки σ0,2, МПа σВ, МПа δ, % Ψ, % KCV, Дж/см2 KCU, Дж/см2 HRC Тауст = 880 °С, охлаждение на воздухе 1420 1793 15 44 38 82 45 Тауст = 880 °С, охлаждение с печью 1088 1477 14,5 41,5 41 93 40 Тауст = 820 °С, охлаждение на воздухе 950 1353 15 43 49 72 39 Тауст = 820 °С, охлаждение с печью 823 1166 16,5 37,5 49 100 27 Тауст = 880 °С, ТИЗО = = 275 °С (360 мин) 1310 1654 13,5 50,5 53 94 45 Тауст = 820 °С, ТИЗО = = 275 °С (360 мин) 915 1197 19 51,5 75 114 35 Примечание. Перед аустенитизацией проводился отпуск при Т = 660 °С с выдержкой 180 мин и охлаждением на воздухе; при аустенитизации время выдержки 60 мин; после каждого режима для каждой плавки был проведен отпуск при Т = 200 °С с выдержкой 120 мин и охлаждением на воздухе. В этом примере наглядно показано влияние легирующих элементов на свойства. При добавлении в сталь 40Х2Н2МА алюминия резко повышается ударная вязкость. К максимальной ударной вязкости среди представленных сталей приводит наличие никеля в стали 15Х2Н3МФ. Сталь 29Х2Г2С2МФ относится к высокопрочным сталям, поэтому предел прочности может получаться выше 1600 МПа. В статье [30] предполагается, что после изотермической закалки (Тауст = 880 °С, ТИЗО = 275 °С (360 мин)) получается структура нижнего бескарбидного бейнита с пакетным мартенситом, которая позволяет реализовать высокие прочностные характеристики при повышении показателей надежности по сравнению с непрерывным охлаждением на воздухе. Обработка из МКИТ приводит к закономерному понижению прочности и повышению пластичности, ударных характеристик. На основании проведенных исследований можно сделать следующие выводы: Анализ литературных источников показал, что тема бескарбидного бейнита актуальна и вызывает интерес исследователей разных стран. Бейнитный феррит без выделения карбидов в стали с определенным сочетанием углерода и кремния позволяет повысить прочностные характеристики или показатели трещиностойкости, а зачастую общий уровень механических свойств, что влияет на продолжительность работы различных деталей машиностроения. Определенное соотношение легирующих элементов в стали позволяет полностью избежать при непрерывном охлаждении попадания в область нормального превращения, тем самым повышается устойчивость аустенита и превращение начинается уже в бейнит. В результате анализа отечественной и зарубежной литературы отмечается, что в последние годы возрастает тенденция к проведению термической Q&P-обработки. Другие режимы термической обработки также остаются популярными и применяются при научных исследованиях. Q&P-обработка является перспективным термическим процессом, так как достигнуть высоких механических свойств можно не только с помощью одной структуры БКБ, но и при получении смешанной бейнито-мартенситной структуры. Актуальной задачей остается получение именно нижнего бескарбидного бейнита, так как верхний бейнит по своей морфологии является грубой структурой, что понижает свойства стали. Практически неизученной является структура, которая получается после термической обработки из межкритического интервала температур, так как в литературе о ней встречается значительно меньше данных, чем о структуре, полученной после термической обработки с температуры аустенитизации. Изученные литературные данные подтвердили предположения о том, что необходимо упрощать технологию получения структуры БКБ, так как на данный момент это достаточно точный процесс термической обработки, который необходимо тщательно соблюдать. Также перспективным считается использование традиционного печного оборудования, по сравнению с печами-ваннами, так как это упрощает технологию термической обработки. Необходимо отметить, что нижний бескарбидный бейнит стремятся получать в сечениях 50-100 мм. Это позволяет расширить номенклатуру деталей со структурой БКБ.

About the authors

A. N Yurchenko

Perm National Research Polytechnic University

Email: sanyaurchenko@rambler.ru

Yu. N Simonov

Perm National Research Polytechnic University

Email: simonov@pstu.ru

References

  1. Курдюмов Г.В., Утевский Л.М., Энтин Р.И.М. Превращения в железе и стали. - Наука, 1977. - 236 с.
  2. Davenport E., Bain E. // Trans. AIME. - 1930. - Vol. 90, № 1. - P. 117-154.
  3. Получение структуры нижнего бескарбидного бейнита в результате изотермической обработки сталей типа Х3Г3МФС и ХН3МФС / Ю.Н. Симонов, М.Ю. Симонов, Д.О. Панов, В.П. Вылежнев, А.Ю. Калетин // МиТОМ. - 2016. - № 2. - С. 4-13.
  4. Goulas C., Mecozzi M.G., Sietsma J. Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation // Metallurgical and Materials Transactions. - 2016. - Vol. 47A. - P. 3077-3087.
  5. Fast granularization of lath-like bainite in FeNiC alloys during isothermal holding at Ms+ 20 K (+20 °C) / M.B.H. Slama, N. Gey, L. Germain, J.C. Hell, K. Zhu, S. Allain // Metallurgical and Materials Transactions. - 2016. - Vol. 47A. - P. 15-18.
  6. Гуляев А.П. Металловедение: учебник для вузов. - 6-е изд., перераб. и доп. - М.: Металлургия, 1986. - 544 с.
  7. Смирнов М.А., Счастливцев В.М., Журавлев Л.Г. Основы термической обработки стали: учеб. пособие. - Екатеринбург, 1999. - 496 с.
  8. Счастливцев В.М., Калетина Ю.В., Фокина Е.А. Остаточный аустенит в легированных сталях. - Екатеринбург: Изд-во Уро РАН, 2014. - 236 с.
  9. Большаков В.И. Игольчатый феррит // Bicник Приднiпровськоi державноi академii будiвництва та архiтектури. - 2015. - № 9. - Р. 10-15.
  10. Reynolds W.T., Aaronson H.I., Spanos G. A. Summary of the present diffusionist views on bainite // Materials Transaction. - 1991. - Vol. 32, № 8. - Р. 737-743.
  11. Bramfitt B.L., Speer J.G. A perspective morphology of bainite // Metallurgical Transactions A. - 1990. - Vol. 21, iss. 3. - P. 817-826.
  12. Morphology and properties of low-carbon bainite / H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori // Metallurgical Transactions A. - 1990. - Vol. 21, iss. 3. - P. 877-888.
  13. Свищенко В.В., Чепрасов Д.П., Иванайский А.А. Формирование в промежуточной области структур зернистой морфологии и некоторые вопросы терминологии // Ползуновский альманах. - 2003. - № 4. - С. 111-114.
  14. Принципы конструирования химического состава сталей для получения структуры нижнего бескарбидного бейнита при замедленном охлаждении / Ю.Н. Симонов, Д.О. Панов, М.Ю. Симонов, В.П. Вылежнев, А.С. Иванов // МиТОМ. - 2015. - № 7. - 20-28.
  15. Khare S., Lee K., Bhadeshia H.K.D.H. Carbide-free Bainite: compromise between rate of transformation and properties // Metallurgical and Materials Transactions. - 2010. - Vol. 41A. - Р. 922-928.
  16. Sharma S., Sangal S., Mondial K. Development of new high-strength carbide-free bainite steels // Metallurgical and Materials Transactions. - 2011. - Vol. 42A. - Р. 3921-3933.
  17. Yakubtsov I.A., Purdy G.R. Analyses of transformation kinetics of carbide-free bainite above and below the athermal martensite-start temperature // Metallurgical and Materials Transactions. - 2012. - Vol. 43A. - Р. 437-446.
  18. Формирование структуры и свойств бескарбидного бейнита в стали 30ХГСА / Д.О. Панов, Ю.Н. Симонов, П.А. Леонтьев, Ю.А. Калетин, М.Н. Георгиев // МиТОМ. - 2016. - № 2. - С. 13-18.
  19. Калетин А.Ю., Рыжков А.Г., Калетина Ю.В. Повышение ударной вязкости конструкционных сталей при образовании бескарбидного бейнита // ФММ. - 2015. - Т. 116, № 1. - С. 114-120.
  20. Caballero F.G., Bhadeshia H.K.D.H. Very strong bainite // Current Opinion in Solid State and Materials Science. - 2004. - № 8. - P. 251-257.
  21. Калетин Ю.М., Рыжков А.Г., Калетин А.Ю. Влияние кремния и алюминия на свойства конструкционных хромоникелевых сталей с бейнитной структурой // Известия вузов. Черная металлургия. - 1989. - № 6. - С. 96-99.
  22. Влияние стабильности остаточного аустенита на трещиностойкость конструкционной стали / М.Н. Георгиев, А.Ю. Калетин, Ю.Н. Симонов, В.М. Счастливцев // ФММ. - 1990. - № 1. - С. 113-121.
  23. Калетин Ю.М., Рыжков А.Г., Калетин А.Ю. Легирование и термическая обработка сталей с бейнитной структурой // МиТОМ. - 1987. - № 10. - С. 13-16.
  24. Navarro-Lopez A., Sietsma J., Santofimia M.J. Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C High-Si steel // Metallurgical and Materials Transactions. - 2016. - Vol. 47A. - Р. 1028-1039.
  25. Yi H.L., Chen P., Bhadeshia H.K.D.H. Optimizing the morfology and stability of retained austenite in a δ-TRIP steel // Metallurgical and Materials Transactions. - 2014. - Vol. 45A. - Р. 3512-3518.
  26. Development of multiphase microstructure with bainite, martensite and retained austenite in a co-containing steel through quenching and partitioning (Q&P) treatment / S. Santigopal, D. Sourav, Ch. Debalay, S. Indradev, S. Shiv Brat, H. Arunansu // Metallurgical and Materials Transactions. - 2013. - Vol. 44A. - Р. 5653-5664.
  27. Ковалева А.А. Специальные стали и сплавы [Электронный ресурс]: электрон. учеб.-метод. комплекс дисциплины. - Красноярск: Изд-во Сиб. федер. ун-та, 2007. - 211 с. - URL: http://files.lib.sfu-kras.ru/ebibl/umkd/71/u_lectures.pdf (дата обращения: 16.02.2016).
  28. Калетин А.Ю., Калетина Ю.В. Повышение вязкости конструкционных сталей при образовании бескарбидного бейнита // Вестник Пермского национального исследовательского политехнического университета. Машиностроение и материаловедение. - 2014. - Т. 16, № 4. - С. 22-30.
  29. On the low temperature strain aging of bainite in the TRIP steel / I. Timokhina, H. Beladi, X.-Y. Xiong, P.D. Hodgson // Metallurgical and Materials Transactions. - 2013. - Vol. 44A. - P. 5177-5191.
  30. Юрченко А.Н., Симонов Ю.Н., Микрюков М.Ю. Влияние непрерывного охлаждения и изотермической выдержки на микроструктуру и механические свойства сталей 17Х2Г2С2МФ и 29Х2Г2С2МФ // Вестник Пермского национального исследовательского политехнического университета. Машиностроение и материаловедение. - 2016. - Т. 18, № 1. - С. 101-116.
  31. Лахтин Ю.М. Металловедение и термическая обработка металлов. - 3-е изд., перераб. и доп. - М.: Металлургия, 1983. - 359 с.
  32. Новиков И.И. Теория термической обработки. - М.: Металлургия, 1986. - 480 с.
  33. Гольдштейн М.И., Грачев С.И., Векслер Ю.Г. Специальные стали: учебник для вузов. - М.: Металлургия, 1985. - 408 с.
  34. Sharma S., Sangal S., Mondial K. Reciprocating sliting wear behavior of newly developed bainitic steels // Metallurgical and Materials Transactions. - 2014. - Vol. 45A. - Р. 5451-5468.
  35. Попелюх П.А., Попелюх А.И., Юркевич М.Р. Комбинированная термомеханическая обработка стали с мартенсито-бейнитным превращением аустенита // Обработка металлов. - 2013. - № 2(59). - С. 62-68.
  36. Mohanty R.R., Girina O.A., Fonstein N.M. Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region // Metallurgical and Materials Transactions. - 2011. - Vol. 42A. - Р. 3680-3690.
  37. Effect of direct quenching and partitioning treatment on mechanical properties of a hot rolled strip steel / Kang Jian, Wang Chao, Li Yunjie, Yuan Guo, Wang Guodong // Journal of Wuhan University of Technology. Mater. Sci. Ed. - 2016. - Vol. 31, № 1. - Р. 178-185.
  38. Recent developments in advanced high strength sheet steels for automotive applications: an overview / D.K. Matlock, J.G. Speer, E.De Moor, P.J. Gibbs // Jestech. - 2012. - № 15(1). - Р. 1-12.
  39. Santofimia M.J., Zhao L., Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization // Metallurgical and Materials Transactions. - 2009. - Vol. 40A. - Р. 46-57.
  40. Santofimia M.J., Zhao L., Sietsma J. Overview of mechanisms involved during the quenching and partitioning process in steels // Metallurgical and Materials Transactions. - 2011. - Vol. 42A. - Р. 3620-3626.
  41. Seo E.J., Cho L., De Cooman B.C. Application of quenching and partitioning (Q&P) processing to press hardening steel // Metallurgical and Materials Transactions. - 2014. - Vol. 45A. - Р. 4022-4037.
  42. Повышение конструкционной прочности деталей ударных машин термической обработкой с созданием в стали смешанной структуры / А.И. Попелюх, А.М. Теплых, Д.С. Терентьев, А.Ю. Огнев // Обработка металлов. - 2009. - № 2(43). - С. 19-24.
  43. Effects of cooling conditions on microstructure, tensile properties, and charpy impact toughness of low-carbon high-strength bainitic steels / Hyo Kyung Sung, Sang Yong Shin, Byoungchul Hwang, Chang Gil Lee, Sunghak Lee // Metallurgical and Materials Transactions. - 2013. - Vol. 44A. - Р. 294-302.

Statistics

Views

Abstract - 44

PDF (Russian) - 420

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies