Vol 20, No 1 (2018)

ARTICLES
EXPERIMENTAL DETERMINATION OF SURFACE TENSIONS AND KINEMATIC VISCOSITY OF MELTS OF STEEL TUBES IN CONDITIONS OF JSC "VYKSUNSK METALLURGICAL PLANT"
Somov S.A., Tsepelev V.S., Konashkov V.V., Vyukhin V.V., Taushkanova A.I.

Abstract

The polytherms of the properties of multicomponent melts differ significantly from polythermal pure metals. They are almost never monotonous, let alone linear. For each grade of alloy (steel), the temperature dependences have their own characteristic appearance with features caused by the composition, the raw materials used in their manufacture, and also the specificity of production. For the first time in the conditions of JSC "Vyksunsky Metallurgical Plant" an experimental work was carried out to study the physical properties and structure of tubular steels near the phase transition. The temperature dependences of the structure-sensitive properties of iron-based liquid alloys are studied. The polytherm of heating revealed special points and areas. All the polyterms constructed are characterized by a mismatch between the heating and cooling branches (hysteresis), which indicates a disequilibrium in the structure of the samples after their melting. Heating the system to temperatures tan ensures the presence of stable hysteresis and indicates a multi-stage transition to equilibrium. As a result of the work, new experimental data were obtained on the physical properties of carbonaceous melts on the basis of industrial pipe steel grades (steel grade 22GYU) produced in electric arc furnaces. The influence of charge materials on the physical properties of melts has been studied. The kinematic viscosity and surface tension of industrial melts of iron-based pipe grades in the temperature range from the liquidus with an excess of 100-200 °C were measured. As a result of the experiment, polytherms obtained by measuring the kinematic viscosity and surface tension on samples of two melts have been constructed and given for visual comparison using various types of charge materials. To test the results, another 20 samples were analyzed from real melts, smelted in accordance with the current orders in the casting and rolling complex. Based on the experimental data obtained, the following recommendations were issued: maximum heating in the EAF furnace to a temperature of 1670 °С, holding for 5-10 minutes for homogenization of the melt, output of melting from the furnace. Recommendations are given on the further temperature preparation of melts of pipe marks on the basis of iron. At the same time, the issue of the resistance of the refractory lining of steel casting ladles is of particular importance in connection with higher temperatures of melting from an arc furnace.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):5-17
views
BEHAVIOR OF SINTERED ALUMINUM BRONZE IN PRESSURE PROCESSING
Gurskikh A.V.

Abstract

Sintered materials exhibit some reduction in mechanical properties due to residual porosity. To eliminate the defects that arise during sintering, a pre-compacting operation combined with shaping is applied. Because the pressing force is limited, it is possible to increase the density of the compacted sample only by decreasing its area, increasing the load on the tool, or by heating the workpiece to a temperature markedly decreasing the strength of the pressed material. It is possible to oxidize the material in open pores. After the collapse of the pores, further deformation of the material is not possible, and the values of the tested material may not be sufficient for a substantial study of the structure in the entire volume of the sintered material. When the samples are free of sediment, the amount of superimposed deformation is limited only by the power of the press tool, because during the sedimentation of the samples, the area of their cross sections increases, and the deformation hardening of the material. The material flow is carried out by shifting along the planes of the maximum shearing stresses. In the course of the work, the influence of temperature on the behavior of single-phase cu-15 at.% al and two-phase cu-24 at.% al compositions on the behavior of a special bronze was studied. It was established that the sediment of samples from sintered alloys without destruction can reach 30%. The increase in the pressing temperature leads to a significant decrease in the working pressure, but a noticeable compaction of the material is observed only at a temperature above 500 °c, when the deformation begins to be distributed uniformly over the volume of the samples.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):18-26
views
INFLUENCE OF THE MODES OF MECHANICAL PROCESSING OF STEEL 38KhN3MFA ON THE VALUE OF RESIDUAL MACROSTRESSES
Aleksandrova O.Y., Shiryaev A.A., Snegireva A.V., Trofimov V.N., Karmanov V.V.

Abstract

Technological residual macro-stresses that arise in the process of manufacturing responsible and expensive engineering products by methods of cutting or processing metals by pressure determine their quality, resource and reliability during operation. For a number of products, the level of residual macrostress is regulated in the design documentation, which requires the development of technologies for controlling their level using non-destructive methods. The control of the level of residual macrostresses by methods of nondestructive testing in the surface layers of products is actual. The article describes the results of studying the effect of processing regimes on the level of residual macrostress using the X-ray diffractometry method using the robotic complex XStress 3000 robotic complex. Objective: to study the effect of machining regimes of 38KhN3MFA steel on residual macrostresses. The methods used: X-ray diffractometry was used, which allow to determine the residual stresses in the surface layer of products from any polycrystalline materials. Used equipment: X-ray diffractometer 3000. Novelty: the dependence of change in residual macro-stresses for 38KhN3MFA steel under various cutting regimes has been experimentally obtained. The dependence of the level of residual macro-stresses on the parameters of the cutting-feeding and cutting rates has been established. It is shown that, in the selected range of parameters of cutting conditions, the minimum level of residual macrostress is observed when using the cutting mode with minimum speed and feed. The obtained data can serve as a basis for creating a database of a technologist and will allow to control the level of residual macrostresses with the purpose of design- nating machining regimes in the design of technological processes, which will enable to improve the quality of products, increase the resource of equipment and reliability.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):27-33
views
DETERMINATION OF THE CHARACTERISTICS OF THE BIT FEEDING MECHANISM OF THE DOWNHOLE DRILLING MOTOR
Kobityansky A.E., Krutik E.N., Beloborodov V.S.

Abstract

Sticking of the drill string is one of the most common types of accidents in drilling practice. This phenomenon occurs in the case of excess frictional forces over the driving forces of the tool. This type of accident accounts for more than 60 % of the complications in the drilling process, and in 40 % of the cases the well is liquidated or re-equipped. Thus, the phenomenon of sticking a drill string is negative and leads to significant material and moral losses. As a result, the design and construction of devices to remove stuck pipe drillstring is an important and urgent problem. In the article the questions of methodology of design and calculation of a feed mechanism of a bit, the design of which represented by CJSC "Gidrobur-service". The principle of operation of the mechanism under investigation is presented. Its design scheme is given taking into account the relationship with the drill string, the screw downhole motor and the tool. The main force and geometric parameters acting on the mechanism under investigation are considered. In accordance with the proposed algorithm, a software product MPDKOMP was developed in the Matlab R2014a system, on the basis of which the values of the main characteristics of the bit feed mechanism and in particular axial pulling force eliminating the sticking effect were obtained. Table and graphic illustrations of one of the calculation options for a number of initial geometric and power parameters of the bottom-hole assembly system are given. Taking into account the obtained values, a strength calculation of a number of basic structural elements of the entire mechanism has been carried out, confirming its reliability and efficiency.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):34-41
views
THE SEQUENCE OF PHASE AND STRUCTURAL TRANSFORMATIONS of FLUOR PHLOGOPITE RAW COMPOSITION
Yudin M.V., Nikolaev M.M., Ignatova A.M., Ignatov M.N.

Abstract

The processes taking place in the raw composition for the production of fluorophlogopite under heating depend on the kind of components of the raw composition, their mineral and chemical compositions, the structure, the particle size of the prepared dispersed raw materials, and a number of other specific features. The paper considers the analytical data and the results of experimental studies on the detection of the sequence of melting of the components of the fluorophlogic dust charge and the phase transformations occurring at temperatures from 100 °C to the temperatures of complete homogenization (≈1400 °C). Experimental results were obtained with the use of thermal analysis and in studying the sequence of melting fluorophlogopite samples in a resistance furnace with silicate electrodes. Details of the sequence of processes preceding the formation of the melt, their physical essence and chemistry are considered in detail. Analytical review of information on the structure-forming processes, allowed the authors to establish that the amount of fluorine-containing component of the charge, determines the amount of fluorophlogopite and the qualitative composition of the concomitant products of crystallization. The article establishes that the grain boundary of the batch is the reaction zone, and the area of their surface determines the rate of processes and reactions in this zone. The authors draw attention to the prospect of introducing a nanotechnological approach to modernizing the technology of obtaining fluorophlogopite, and also points to the principles of using mechanochemical treatment of charge components and the use of nanosecond electromagnetic pulses with high-concentrated electropulse energy to improve the operational properties of products from fluorophlogopite. The conducted research established the sequence of processes during heating and melting of the main components of the charge for obtaining fluorophlogopite: dehydration → solid-phase reactions → thermal decomposition of components → secondary reactions and sintering → formation of the liquid phase → melting → homogenization of the melt. Complete homogenization of the melt occurs at a temperature of 1380-1400 °C.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):42-52
views
Simulation of the temperature effect of a single pulse during electrical discharge machining
Ablyaz T.R., Muratov K.R., Krasnovsky E.E., Borisov D.A.

Abstract

The aim of the work is to develop a theoretical model that allows one to describe the magnitude of the temperature effect on the workpiece surface during EDM processing. Simulation of a single pulse was carried out using the software package Comsol Multyphysics 4.4. When carrying out calculations, steel 38Х2Н2МА according to GOST 4543-71 was chosen as the material of the billet. The simulation of the plasma channel was carried out using the physics of "Heat Transfer in Solids". In view of the fact that the discharge channel has a cylindrical shape, the simulation was carried out for a two-dimensional axisymmetric model. Due to the fact that the alloying elements of steel 38X2N2MA influence its critical points, a correction factor has been introduced into the theoretical model. When modeling the heat flow, the impulse effect of the current on the workpiece surface was taken into account by using the "Step" function. As a result of the simulation, it is established that the temperature on the surface of the part in the center of the discharge during the EDM exceeds 2500 degrees, as a result of which a single well is formed on the treated surface. It is shown that the shape of a single well, obtained as a result of modeling, is a cup-like shape, that is, the crater width is higher compared to the depth, which does not contradict the existing scientific data. The width and depth of the crater in the time range t = 100…200 μs increase. When the time reaches t = 200 μs, the temperature in the well becomes peak, then it decreases. It is shown that in order to improve the accuracy of simulation of the temperature effect on the surface of the billet in the EEE, it is necessary to take into account the impulse nature of the current effect and introduce the "Step" function into the system of equations.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):53-61
views
Methodical principles of computer-aided gas-dynamic design In electroplasma technologies
Anakhov S.V., Pyckin Y.A., Matushkin A.V.

Abstract

Results on development of a computation procedure and designing for metal-cutting plasmatrons are presented. It is noted, that the similar technique should be based on functional, systemic and optimal principles. Any method of designing DC arc plasmatrons should take into account the main factors of electroplasmic technologies, generalized principles and methods of their design. The principles of functionality, consistency and optimality should be the basis of such method. Special attention at designing it is necessary to turn on gas-dynamic factors and safety of plasma technologies. In this regard, the features of several known methods of gas-dynamic design of plasmatrons are considered. It is noted that they do not take into account the inevitable pressure losses arising in the areas of the gas-air path preceding the nozzle chamber (primarily in the swirl). Also, the asymmetry of the gas supply distribution along the section of the plasma torch path is not taken into account. The offered method includes calculation of gas-dynamic losses and plasma gas uniformity in cross-section of an air-gas path. The results of gas-dynamic analysis are used for profiling an air-gas path in view of design principles. Discussed the feasibility of applying specialized software for the study of processes and design of plasma torches. As an example, the work of the software package EFD.lab in the design of plasma torches for cutting metals is presented. Also presents the results of computer-aided design in electroplating technologies. The considered technique is applied for new plasmatrons development, including narrow jet plasma technology.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):62-70
views
Application of energy equivalent analog exposure limit to assess the state of metal
Kuznetsov S.A., Beklemishev N.N., Zagarovsky A.A.

Abstract

The development of methods of physical mesomechanics made it possible to propose a method for describing the limiting state of a material through a universal characteristic, the limiting strain energy density. This approach is realized through the introduction of an equivalent stress that does not depend on the type of external influence. This approach is based on a modern understanding of the mechanisms of development of a defective structure as a set of self-organized and self-consistent processes occurring at once on several scale levels. Modern studies consider the possibility of a direct transition from stresses to the strain energy density, while the voltage always appears as averaged over a certain volume. In fact, this approach expands the possibilities of using the classical description of material properties. This is made possible by a physically justified transition between continuum mechanics and the physics of crystal structure. In the present paper, the possibility of applying the energy equivalent of the limiting voltage under normal experimental conditions for various types of external action is considered. In particular, an estimate is made of the size of the local deformation zone observed in the super-multicycle loading of the VT3-1 alloy. A conclusion is drawn about the determining value of stress localization under this type of action. The form of the energy criterion of destruction, based on the principle of accumulation of damages, applicable for macro- and mesoscale levels of description is formulated. A hypothesis is advanced that the energy density corresponding to the limiting voltage is the limiting characteristic for the material and in the case of exposure to ionizing radiation. Based on this assumption, an estimate is made of the radius of the deformed region around the track of a 1-GeV gold ion in the BT3-1 alloy. Thus, a relationship is established between the strength and energy characteristics of the material, taking into account the detailed consideration of the mechanisms of the evolution of the defect structure under a specific external influence. A uniform description of the self-organized and self-consistent development of a defective structure at various scale levels is presented and it is shown that the concept of equivalent stress can be extended to cases of destructive effects of a different nature, for example, ionizing radiation.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):71-82
views
SIMULATION OF DIFFUSION-ADHESION PROCESSES IN FRICTION STEEL STEEL-STEEL OF THE WORKING PARTS OF MACHINES
Zelinskyi V.V., Borisova E.A., Karpov A.V.

Abstract

For a certain group of technological machines, the problem of increasing the wear resistance of working parts is studied, which, performing the functions of grip-feed, pressure and cutting, form pairs of friction steel-steel with the object of labor. A hypothesis has been put forward that the wear of the working parts is due to the formation in the process of friction of dispersed secondary microstructures with increased hardness as a result of chemical processes with the creation of strong covalent bonds. In this case, the initial reagents are carbide-forming chemical elements of the material of the working parts, the transfer of which into the lattice of the conjugated solid is realized by diffusion and adhesion processes. Experimental modeling of mass transfer processes and the formation of wear-out dispersed solid particles is achieved by reproducing these phenomena in conditions of deterministic friction using the example of the tribosystem high-alloy steel R6M5-carbon steel. In this case, the possibility of reducing the wear of the indenter by magnetizing it in a pulsed magnetic field is studied, based on the use of magnetic influence as an energy factor in controlling the process of mass transfer in the interaction zone of conjugated crystal lattices. Based on the results of microhardness measurements, the formation of secondary structures with high hardness, unattainable for strain hardening, was revealed. The conclusion is made about the decisive role in their formation of the mechanism of solid-solution hardening, initiated by the effect of self-organization in friction as a thermodynamic phenomenon. By studying the elemental content of the surface layer of the counterbody by spectral analysis using the Q4 TASMAN spectrometer, the principle possibility of transferring the carbide-forming elements from the indenter to the counter-body by diffusion and adhesion is established. The results of the evaluation of the effect of magnetic processing of the indenter on the transfer efficiency of these elements (in 7-20 times) are presented. Using experimental results and the foundations of materials science and tribology, it was shown that solid secondary structures can be carbide phases and intermetallides with an increased fraction of the covalent bond characteristic of these chemical compounds.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):83-93
views
ASSESSMENT OF A POSSIBILITY POLISHING OF STAINLESS STEELS JET ELECTROLYTIC AND PLASMA PROCESSING
Novoselov M.V., Shilling N.G., Rudavin A.A., Radkevich M.M., Popov A.I.

Abstract

The possibility of jet electrolytic and plasma polishing of a surface of stainless steels is shown. Advantages of this type of processing in comparison with processing of products in an electrolytic bathtub are shown. The purpose of work is clarification of conditions under which there is a polishing of a surface of stainless steel at its processing by different cathodic modules. Tasks of work are assessment of volts - the ampere characteristic, the choice of electrolyte for polishing, the choice of range of the technological modes. As an object of researches samples and products are chosen from stainless steels 20X13, 08X18H9T, AISI 201. Polishing of products and samples from stainless steel was carried out on skilled jet electrolytic and plasma installation. As cathodic modules were used hollow токоподвод and токоподвод equipped with a magnetron raspylitelny head. At a research of influence of electrolytic plasma on a surface of a product of the anode which is carrying out a role electrolyte on the basis of ammonium of sulfate and sodium sulfate has been used. In the course of carrying out numerous experiments are recorded volt - the ampere characteristics electrolytically - the plasma category with use of different types of tokopodvod in the range of working voltage from 0 to 500 volts. In the course of the experiments the electrolyte consumption on all modes was fixed. Methods of macroshooting and microfilming of process electrolytically - plasma processing were used. Change of parameters of the plasma category with increase in tension is recorded. The morphological analysis of a surface of the processed anode after technological operation of a pileniye is carried out. Dependences of change of roughness on size of the enclosed tension are investigated. It is carried out the analysis of change of weight of the samples making an anode role before electrolytic and plasma processing. The possibility of application of electrolytic and plasma jet processing as method of finishing processing for receiving a surface with the low level of roughness is shown.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):94-102
views
Effect of the screw surface inclination angle choice of disk tools set parameters in processing a smooth helical surfaces with undercut profile
Perevoznikov V.K.

Abstract

Products with helical surfaces are widely used in the automobile industry, machine tool manufacturing and tool industry. The helical surface machining, including spiraled flute of cutting tool, is a difficult analytical task in the cutting tool design. In connection with severization of requirements to metal-cutting tools quality, machining helical surface, the learn of disk tools installation options for machining helical surfaces is one of the most important and complicated problem in tool industry. This circumstance is explained by the fact that the profile of the helical surface does not match the profile of the tool, and the source data from the detail drawing is often defined in different cross-sections and different parameters: without taking into account the need to solve the problems of installation options choice: аw - the centre distance of detail and disk tool; e - the angle of crossing between the positive direction of the part axis and the negative direction of the tool axis (axial angle) and y - the rotation the end profile part relating to the line of the centre distance perpendicular. The method of blocking lines is proposed. It lets find the optimum parameters of the installation disk tools right without connecting curves and undercuts in the touch area of the helical surface profile with the tool of the second order. The analysis of blocking lines graphic forms depending on disk tools installation options, machining helical surfaces with a smooth undercut profile, is done. Research results that show the influence of the lean angle of helical surface to blocking lines form and installation options limits are given. It is found that with changing the lean angle of helical surfaces the installation settings tools also change. With the angle increase w - the setting y is growing, but the setting e is reduced. The most optimal installation settings can be achieved only if the angle w is in the range of 10° to 60°. Within these limits the approximate equality of angles t in the nodal points of helical surface profile is achieved.
Bulletin PNRPU. Mechanical engineering, materials science. 2018;20(1):103-110
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies