On a priori estimates of the Kirchhoff equation integral load
- Authors: Boziev O.L1,2
- Affiliations:
- Kabardino-Balkarian State University
- Institute of Computer Science and Problems of Regional Management of Kabardino-Balkarian Science Center of the Russian Academy of Sciences
- Issue: No 2 (2024)
- Pages: 6–17
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/amcs/article/view/4478
- DOI: https://doi.org/10.15593/2499-9873/2024.2.01
- Cite item
Abstract
A large number of physical, biological and other phenomena are described by loaded equations. The nonlinear hyperbolic Kirchhoff equation models some oscillatory processes. It contains a load in the form of a rational degree m/n of a linear function of the norm of the desired solution in the space H1(Ω). We will call such a load an integral one. In this paper, a second mixed problem with homogeneous boundary conditions is considered for this equation. Due to the complexity of integrating nonlinear differential equations, in many cases they are approximated by linear equations with varying degrees of accuracy. In this case, it may turn out that the linearized equation very conditionally models the phenomenon under study.The purpose of this work is to establish a priori estimates for the integral load of the Kirchhoff equation. Subsequently, they are used for its "correct" linearization. The corresponding results are formulated in the form of theorems. In the case of a positive degree m/n, the obtained estimate is valid for any values of m and n. In the negative case, separate estimates are set for m < n, m = n and m > n. In all cases, a transition is made from the non-strict equality of the a priori assessment to equality. This equality relates the integral load to some linear function depending on the initial conditions and the right side of the equation. To reduce the Kirchhoff equation to a linear equation, its integral load is replaced by the resulting function. The method is applicable to equations with an integral load both in the main part and in the minor terms.
Full Text
1About the authors
O. L Boziev
Kabardino-Balkarian State University; Institute of Computer Science and Problems of Regional Management of Kabardino-Balkarian Science Center of the Russian Academy of Sciences
References
- Похожаев, С.И. Об одном классе квазилинейных гиперболических уравнений / С.И. Похожаев // Матем. сб. – 1975. – Т. 96 (138), № 1. – С. 152–166.
- Похожаев, С.И. Об одном квазилинейном гиперболическом уравнении Кирхгофа / С.И. Похожаев // Дифф. уравнения. – 1985. – Т. 21, № 1. – С. 101–108.
- Nishihara, K. Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping / K. Nishihara // Nonlinear Analysis: Theory, Methods & Applications. – 1984. – Vol. 8, № 6. – P. 623–636.
- Crippa, H.R. On local solutions of some mildly degenerate Hyperbolic equations / H.R. Crippa // Nonlinear Analysis: Theory, Methods & Applications. – 1993. – Vol. 21, № 8. – P. 565–574.
- Ngoc, L.T.P. Linear approximation and asymptotic expansion of solutions in many small parameters for a nonlinear Kirchhoff wave equation with mixed nonhomogeneous conditions / L.T.P. Ngoc, N.T. Long // Acta Appl Math. – 2010. – Vol. 112. – P. 137–169. DOI: 10.1007/ s10440-009-9555-9
- Frota, C.L. Wave equation in domains with nonlocally reacting boundary / C.L. Frota, L.A. Medeiros, A. Vicente // Differential and Integral Equations. – 2011. – № 17. – P. 1001–1020. doi: 10.57262/die/1356012872
- Frota, C.L. A mixed problem for semilinear wave equations with acoustic boundary conditions in domains with non-locally reacting boundary / C.L. Frota, L.A. Medeiros, A. Vicente // Electronic Journal of Differential Equations. – 2014. – Vol. 2014, № 243. – P. 1–14.
- Ono, K. Lower decay estimates for non-degenerate Kirchhoff type dissipative wave equations / K. Ono // J. Math. Tokushima Univ. – 2018. – Vol. 52. – P. 39–52.
- Ono, K. Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains / K. Ono // J. Math. Tokushima Univ. – 2021. – Vol. 55. – P. 11–18.
- Бозиев, О.Л. О линеаризации гиперболических уравнений с интегральной нагрузкой в главной части с помощью априорной оценки их решений / О.Л. Бозиев // Вестник Томского государственного университета. Математика и механика. – 2022. – № 80. – С. 16–25. doi: 10.17223/19988621/80/2
- Cazenave, T. Global behavior for some conservative nonlinear equations / T. Cazenave, A. Haraux, F.B. Wessler // Matematica Contemporana. – 1995. – Vol. 8. – P. 89–106.
- Nonlinear Wave Equations with Acoustic Boundary Conditions / G. Antunes, C.L. Frota, L.A. Medeiros, M. Da Silva // International Journal of Differential Equations and Applications. – 2013. – Vol. 12, no. 4. – P. 151–167. doi: 10.12732/ijdea.v12i4.1343
- Lourêdo, A.T. On a nonlinear wave equation with boundary damping / A.T. Lourêdo, M.A.F. Araújo, M. Milla Miranda // Mathematical Methods in the Applied Sciences. – 2013. Wiley. doi: 10.1002/mma.2855
- Milla Miranda, M. On Second-Order Differential Equations with Nonsmooth Second Member / M. Milla Miranda, A.T. Lourêdo, L.A. Medeiros // ISRN Applied Mathematics. – Vol. 2014. – P. 1–13. doi: 10.1155/2014/305718
- Lions, J.-L. Some Methods in the Mathematical Analysis of System and Their Control / J.-L. Lions. – Science Press, New York, NY, USA, 1981. – 542 p.
- Grotta Ragazzo, C. Chaos and integrability in a nonlinear wave equation / C. Grotta Ragazzo // Journal of Dynamics and Differential Equations. – 1994. – Vol. 6, no. 1. – P. 227–244. doi: 10.1007/BF02219194
- Бозиев, О.Л. О слабых решениях нагруженного гиперболического уравнения с однородными краевыми условиями / О.Л. Бозиев // Вестник Южноуральского государственного университета. Серия «Математика, физика, механика». – 2019. – Т. 11, № 2. – С. 5–13. doi: 10.14529/mmph190201
- Бозиев, О.Л. О слабых решениях нагруженного гиперболического уравнения с однородными начальными условиями / О.Л. Бозиев // Вестник Томского государственного университета. Математика и механика. – 2020. – № 63. – С. 5–14. doi: 10.17223/19988621/63/1
- Бозиев, О.Л. Решение нелинейного гиперболического уравнения приближенно-аналитическим методом / О.Л. Бозиев // Вестник Томского государственного университета. Математика и механика. – 2018. – № 51. – С. 5–14. doi: 10.17223/19988621/51/1
- Филатов, А.Н. Интегральные неравенства и теория нелинейных колебаний / А.Н. Филатов, Л.В. Шарова. – М.: Наука, 1976. – 151 с.
Statistics
Views
Abstract - 3
PDF (Russian) - 1
Refbacks
- There are currently no refbacks.