On the Cauchy matrix of a class of hybrid systems

Abstract


We consider the issue of asymptotic stability of a linear continuous-discrete system of functional differential equations with constant coefficients. Such systems consist of two subsystems, continuous and discrete, and are often called hybrid. The continuous subsystem is a system of differential equations. The feature of the hybrid system under consideration is that its continuous part is a system of differential equations with concentrated delay, while the overwhelming majority of papers consider hybrid systems whose continuous part is a system of ordinary differential equations. The standard approach to studying the stability of the latter systems is integration on each finite interval and the construction of the monodromy matrix. However, this approach is generally inapplicable to the problem of studying the stability of hybrid systems such that the continuous part is a system of differential equations with deviating argument. In the present paper, the method of generating functions and the analysis of the spectrum of shift operator along the trajectory of the solution of a hybrid system are applied to study the stability of hybrid systems. Construction of the generating function for the Cauchy matrix and for the fundamental solution allows us to reduce the problem of asymptotic stability of a hybrid system to the problem of studying the location of the roots of a certain function in the complex plane. For this function, it is natural to introduce the term «the characteristic function of the hybrid system», which was done. In addition, it is proved that for these hybrid systems, the asymptotic stability is equivalent to the uniform exponential stability. This approach is compatible with the D-partition method, which allows us to use it to obtain new effective coefficient conditions of asymptotic stability for hybrid systems: in particular, to construct the stability region. In this article, a new simple necessary criterion for the asymptotic stability of a hybrid system is constructed, which is reduced to checking two elementary numerical inequalities.

Full Text

5

About the authors

M. V Mulyukov

Perm State National Research University; Perm National Research Polytechnic University; Perm State Pharmaceutical Academy

References

  1. Козлов, Р. И. Исследование устойчивости нелинейных непрерывно-дискретных моделей экономической динамики методом ВФЛ. I / Р. И.Козлов, О. Р.Козлова // Известия Российской академии наук. Теория и системы управления. — 2009. — № 2. — С. 104–113.
  2. Козлов, Р. И. Исследование устойчивости нелинейных непрерывно-дискретных моделей экономической динамики методом ВФЛ. II / Р. И. Козлов, О. Р. Козлова // Известия Российской академии наук. Теория и системы управления. — 2009. — № 3. — С. 41–50.
  3. Fridman, E. Stability of linear descriptor systems with delay: a Lyapunov-based approach / E. Fridman // Journal of Mathematical Analysis and Applications. — 2002. — Vol. 273, no. 1. — P. 24–44.
  4. De la Sen, M. Total Stability Properties Based on Fixed Point Theory for a Class of Hybrid Dynamic Systems / M. De la Sen // Fixed Point Theory and Applications. — 2009. — No. 826438.
  5. Симонов, П. М. К вопросу об устойчивости системы двух линейных гибридных функционально-дифференциальных систем с последействием / П. М. Симонов // Вестник российских университетов. Математика. — 2020. — Т. 25, № 131. — С. 299–306.
  6. Bravyi, E. Some Economic Dynamics Problems for Hybrid Models with Aftereffect / E. Bravyi, V. Maksimov, P. Simonov // Mathematics. — 2020. — Vol. 8, no. 10. — Paper no. 1832.
  7. Ye, H. Stability Theory for Hybrid Dynamical Systems / H.Ye, A. N. Michel, L. Hou // IEEE Transactions on automatic control. — 1998. — Vol. 43, no. 4. — P. 461–474.
  8. Marchenko, V. M. On the Stability of Hybrid Difference-Differential Systems / V. M. Marchenko, J.-J. Loiseau // Differential Equations. — 2009. — Vol. 45. — P. 743–756.
  9. Марченко, В. М. Устойчивость и стабилизация линейных гибридных дискретно-непрерывных стационарных систем / В. М. Марченко, И. М. Борковская // Труды БГТУ. Физико-математические науки и информатика. — 2012. — № 6. — C. 7–10.
  10. Mulyukov, M. The asymptotic stability of the simplest hybrid systems / M. Mulyukov // Functional Differential Equations. — 2023. — Vol. 30, no. 1–2. — P. 77–86. doi: 10.26351/FDE/30/1-2/6.
  11. Мулюков, М. В. Об устойчивости одного уравнения с дискретным запаздывающим аргументом и постоянным сосредоточенным запаздыванием / М. В.Мулюков // Известия вузов. Математика. — 2023. —№10. — С. 90–94. doi: 10.26907/0021-3446-2023-10-90-94.
  12. Азбелев, Н. В. Введение в теорию функционально-дифференциальных уравнений / Н. В. Азбелев, В. П. Максимов, Л. Ф. Рахматуллина. — М.: Наука, 1991. — 280 с.
  13. Баландин, А. С. Об экспоненциальной устойчивости линейных дифференциально-разностных уравнений нейтрального типа / А. С. Баландин, В. В. Малыгина // Известия вузов. Математика. — 2007. — № 7. — С. 17–27.
  14. Мулюков, М. В. Об асимптотической устойчивости одного уравнения с дискретным запаздывающим аргументом / М. В.Мулюков // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2024. — Т. 231. — С. 83–88. — doi: 10.36535/2782-4438-2024-231-83-88.

Statistics

Views

Abstract - 15

PDF (Russian) - 1

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies