Computer modeling of mechanical behavior of the Ilizarov apparatus modified by Bagirov

  • Authors: Lukina Y.S1,2, Bionyshev-Abramov L.L1, Sotin A.V3, Suvarly P.N4, Samborskij D.Y.1, Klokova A.N2, Bagirov A.B1,5,6
  • Affiliations:
    1. Priorov National Research Center of Traumatology and Orthopedics
    2. D. Mendeleev University of Chemical Technology of Russia
    3. Perm National Research Polytechnic University
    4. Scientific Medicine Clinic LLC
    5. Moscow Aviation Institute (State Technical University)
    6. International Medical Association – BRICS Health University
  • Issue: No 4 (2024)
  • Pages: 18–33
  • Section: ARTICLES
  • URL: https://ered.pstu.ru/index.php/amcs/article/view/4569
  • DOI: https://doi.org/10.15593/2499-9873/2024.4.02
  • Cite item

Abstract


The development of computer models of orthopedic products allows adding to the arsenal of a trauma surgeon a digital toolkit that allows to calculate the biomechanical consequences of the chosen tactics of reconstructive and restorative treatment. Thus, when using percutaneous osteosynthesis systems with the help of a digital twin of the external fixation apparatus, the operating specialist at the preoperative stage can assess the influence of the choice of the apparatus layout on the risk of possible separation of bone fragments.Clinical indications for the use of the Ilizarov apparatus of the Bagirov modification are fractures of diaphyses of the tibia bones, which account for up to 45 % of all fractures of long bones of the human skeleton. Fracture healing is accompanied by a large number of complications, so the problem of improving the results of treatment of patients with this injury is still relevant for modern traumatology and orthopedics. The use of external fixation devices makes it possible to ensure stable functional osteosynthesis and eliminate the need for plaster immobilization of the segment or limb in the postoperative period. The use of compression-distraction devices allows us to expand the potential use of external fixation devices to solve the problems of distraction osteogenesis. Biomechanical relationships in the bone-apparatus system are a significant factor that allows objectifying the apparatus layout and the mode of motor rehabilitation in the early postoperative period.Within the framework of this study, a mathematical model of the Ilizarov apparatus of the Bagirov modification was constructed and the stress-strain state of the apparatus components under model loads was calculated using the finite element method. To validate the computer model, a field experiment was conducted on a Walter+Bai AG LFM-5 universal testing machine. The investigated structure was subjected to axial compression with a load up to 1000 N. As a result of the comparative analysis of the resistance of the device to axial compression, it was found that the results of finite element calculations describe the experimental results with sufficient accuracy. Comparison of the calculation results with experimental data allows us to state that the proposed computer model correctly describes the mechanical behavior of the studied medical device and can be used in computational experiments to assess the functionality of various device layouts.

Full Text

2

About the authors

Yu. S Lukina

Priorov National Research Center of Traumatology and Orthopedics; D. Mendeleev University of Chemical Technology of Russia

L. L Bionyshev-Abramov

Priorov National Research Center of Traumatology and Orthopedics

A. V Sotin

Perm National Research Polytechnic University

P. N Suvarly

Scientific Medicine Clinic LLC

D. Ya Samborskij

Priorov National Research Center of Traumatology and Orthopedics

A. N Klokova

D. Mendeleev University of Chemical Technology of Russia

A. B Bagirov

Priorov National Research Center of Traumatology and Orthopedics; Moscow Aviation Institute (State Technical University); International Medical Association – BRICS Health University

References

  1. Fixation technique influences osteogenesis of comminuted fractures / L. Claes, U. Heitemeyer, G. Krischak, H. Braun, G. Hierholzer / Clin Orthop. – 1999. № 365. – P. 221–229.
  2. Аппарат внешней фиксации конструкции Г.А. Илизарова. Оценка клинической эффективности и безопасности (обзор литературы) / Ю.П. Солдатов, М.В. Стогов, Е.Н. Овчинников, А.В. Губин, Н.В. Городнова / Гений ортопедии. 2019. – № 4 (25). – С. 588–599. doi: 10.18019/1028-4427-2019-25-4-588-599
  3. Ilizarov, G.A. The Apparatus: components and biomechanical principles of application / G.A. Ilizarov // Green S (Ed) Transosseus osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. – Springer-Verlag Berlin, 1992. – P. 63–136.
  4. Fragomen, A.T. The Mechanics of External Fixation / A.T. Fragomen, S.R. Rozbruch // HSS Journal. – 2006. – Vol. 1, iss. 3. – P. 13–29. doi: 10.1007/s11420-006-9025-0
  5. Пичхадзе, И.М. Роль биомеханической концепции фиксации отломков при лечении последствий огнестрельных переломов костей конечностей / И.М. Пичхадзе, Л.М. Данелия, К.А. Ку¬зьменков // Вестник травматологии и ортопедии им. Н.Н. Приорова. – 2010. – № 4. – С. 59–64.
  6. Axial movement and tibial fractures. A controlled randomized trial of treatment / J. Kenwright, J.B. Richardson, J.L. Cunningham, S.H. White, A.E. Goodship, M.A. Adams, J.H. Newman // J Bone Joint Surg Br. – 1991. – № 73. – P. 654–659.
  7. The role of rigid frame stiffness in the control of fracture healing. An experimental study / A.E. Goodship, P.E. Watkins, H.S. Rigby, J. Kenwright // J Biomech. – 1993. – № 26. – P. 1027–1035.
  8. Sarmiento, A. Fracture healing in rat femora as affected by functional weight-bearing / A. Sarmiento, J.F. Schaeffer, L. Beckerman // J. Bone Jt Surg Am. 1977. – Iss. 59. – P. 369–375.
  9. Klein, P The initial phase of fracture healing is specifically sensitive to mechanical conditions / P. Klein, H. Schell, F. Streitparth // J Orthop Res. – 2003. – Iss. 21. – P. 662–669.
  10. Yang, L. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators / L. Yang, S. Nayagam, M. Saleh // Clinical Biomechanics. – 2003. – Vol. 2, iss. 18. – P. 166–172. doi: 10.1016/s0268-0033(02)00175-4
  11. Mitousoudis, A.S. A biomechanical analysis of the Ilizarov external fixator / A.S. Mitousoudis, E.A. Magnissalis, S.K. Kourkoulis // EPJ Web of Conferences. – 2010. – Iss. 6. – 21002. doi: 10.1051/epjconf/201006210
  12. Henderson, D.J. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? / D.J. Henderson // Clinical Orthopaedics and Related Research. – 2016. – Vol. 474. – P. 1041–1049.
  13. Calhoun, J.H. Rigidity of half-pins for the Ilizarov external fixator / J.H. Calhoun // Bulletin (Hospital for Joint Diseases (New York, NY)). – 1992. – Vol. 52, iss. 1. – P. 21–26.
  14. Najim, A.A. Enhancing the Ilizarov Apparatus: Mechanical Stiffness / A.A. Najim, S.J. Hamandi, A. Alzubaidi // Al-Nahrain Journal for Engineering Sciences. – 2024. – Vol. 27, iss. 1. – P. 25–31.
  15. Gasser, B. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. / B. Gasser, B. Boman, D. Wyder, // J BiomechEng. – 1990. – Iss. 112. – P. 15–21.
  16. Bending stiffness of unilateral and bilateral fixator frames. / F. Behrens, W.D. Johnson, T.W. Koch, N. Kovacevic / Clin OrthopRelat Res. – 1983. – Iss. 178. – P. 103–110.
  17. Зедгенидзе, И.В. Характеристика систем аппаратов внешней фиксации, используемых при лечении диафизарных переломов длинных костей / И.В. Зедгенидзе, Л.Ю. Павлов // Сибирский медицинский журнал. – 2018. – № 1. – С. 38–42.
  18. Соломин, Л.Н. Биомеханическое обоснование количества соединительных стержней между опорами аппарата Г.А. Илизарова / Л.Н. Соломин, М.В. Андрианов, В.А. Назаров // Гений ортопедии. – 2006. – № 3. – С. 21–24.
  19. Исследование и сравнительная оценка показателей прочности фиксации отломков модели бедренной кости различными типами аппаратов внешней фиксации и накостных пластин / О.Н. Ямщиков, И.А. Норкин, С.А. Емельянов, Д.А. Марков // Вестник ТГУ. – 2014. – № 6 (19). – С. 1968–1970.
  20. Механические свойства систем кость-имплантат в условиях различных способов фиксации / Т.Б. Минасов, В.Л. Скрябин, А.В. Сотин, И.Б. Минасов, Р.А. Саубанов, А.А. Файзуллин, Р.М. Вахитов-Ковалевич // Российский журнал биомеханики. – 2020. – Т. 24, № 3. – С. 364–369.
  21. Биомеханическое обоснование чрескостной фиксации переломов бедренной кости / Д.А. Марков, К.К. Левченко, В.П. Морозов, О.А. Кауц, А.Г. Курманов, Р.К. Абдулнасыров, А.Г. Качатрян, А.Н. Перегородов, А.В. Мандров // Саратовский научно-меди¬цинский журнал. – 2009. – № 4 (5). С. 591–593.
  22. Соловцова, Л.А. Методика компьютерного исследования жесткости спице-стержне¬вых фиксирующих устройств / Л.А. Соловцова // Российский журнал биомеханики. – 2010. – № 1 (47). – С. 17–25.
  23. A Finite Element Study: Finding the Best Configuration between Unilateral, Hybrid, and Ilizarov in terms of Biomechanical Point of View. / A.U.A. Aziz, A.H.A. Wahab, R.A.A. Rahim, M.R.A. Kadir, M.H. Ramlee / Injury. – 2020. doi: 10.1016/j.injury.2020.08.001
  24. Su, P. Screw analysis, modeling and experiment on the mechanics of tibia orthopedic with the Ilizarov external fixator / P. Su // Micromachines. – 2022. – Vol. 13, iss. 6. – P. 932.
  25. Finite element modelling of the Ilizarov external fixation system / M. Watson, K.J. Mathias, N. Maffulli, D.W.L. Hukins, D.E.T. Shepherd // Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. – 2007. – Vol. 8, № 221. – P. 863–871. doi: 10.1243/09544119jeim225
  26. Mitousoudis, A.S. A biomechanical analysis of the Ilizarov external fixator / A.S. Mitousoudis, E.A. Magnissalis, S.K. Kourkoulis // EPJ Web of Conferences. – 2010. – Vol. 6. – 21002. doi: 10.1051/epjconf/201006210
  27. Toumanidou, T. A finite element model of the Ilizarov fixator system / T. Toumanidou, L.A. Spyrou, N. Aravas // 10th International Workshop on Biomedical Engineering. – 2011. doi: 10.1109/iwbe.2011.6079016
  28. Zamani, A.R. Theoretical and Finite Element Modeling of Fine Kirschner Wires in Ilizarov External Fixator / A.R. Zamani, S.O. Oyadiji // Journal of Medical Devices. – 2010. – Vol. 3, iss. 4. – 031001. doi: 10.1115/1.4001815
  29. Цискарашвили, А.В. Анализ основных элементов фиксации аппарата для внешнего остеосинтеза / А.В. Цискарашвили, А.В. Дудченко // Российский журнал биомеханики. – 2019. – № 3 (23). – С. 435–450. doi: 10.15593/RZhBiomeh/2019.3.09.
  30. Development of Knowledge-Based Engineering System for Structural Size Optimization of External Fixation Device / E. Mesic, N. Pervan, A.J. Muminovic, A. Muminovic, M. Colic // Appl. Sci. – 2021. – Vol. 11. – 10775. doi: 10.3390/app112210775
  31. Design, analysis and testing of an external fixation device manufactured from composite materials / Z. Padovec, P. Ruzicka, R. Sedlacek, M. Ruzicka // Applied and Computational Mechanics. – 2017. – Vol. 11. – P. 145–154. doi: 10.24132/acm.2017.398
  32. Biomechanical Performance Analysis of the Monolateral External Fixation Devices with Steel and Composite Material Frames under the Impact of Axial Load / N. Pervan, E. Mesic, A.J. Muminovic, M. Delic, E. Muratovic, M. Trobradovic, V. Hadziabdic // Appl. Sci. – 2022. – Vol. 12. – P. 722. doi: 10.3390/app12020722
  33. Математическое моделирование и опыт применения нового устройства при переломах костей голени / Цяо Гуанда, С.А. Лепехова, Н.В. Тишков, А.С. Бубнов // Сибирский медицинский журнал (Иркутск). – 2015. – Вып. 4.
  34. Kumar, D.B. Finite element analysis of external Ilizarov ring and hybrid fixators / D.B. Kumar, K.G. Muthurajan // Int. J. Sci. Res. 2014. – Vol. 3, iss. 2. – P. 76–78.
  35. Stress Distributions and Micromovement of Fragment Bone of Pilon Fracture Treated With External Fixator: A Finite Element Analysis / M.H. Ramlee, H.S. Gan, S.A. Daud, A. Abdul Wahab, M.R. Abdul Kadir // The Journal of Foot and Ankle Surgery. – 2020. – Vol. 4, № 59. – P. 664–672. doi: 10.1053/j.jfas.2019.09.006
  36. Эффективность модифицированных компоновок аппаратов наружной фиксации при устранении варусной деформации голеней / А.Б. Багиров, К.А. Лаймуна, Н.А. Шестерня, Б.Д. Алинагиев, П.Н. Суварлы // Клинические аспекты травматологии и ортопедии. – 2021. – № 2 – С. 50–59. doi: 10.24412/1819-1495-2021-2-50-59

Statistics

Views

Abstract - 29

PDF (Russian) - 6

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies