Modelling the learning process in Petri net notation for effective managerial decision making
- Authors: Fedoseev A.I1, Ponomareva L.A1, Zabolotnikova V.S1
- Affiliations:
- Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Institute of Social Sciences
- Issue: No 4 (2024)
- Pages: 76-87
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/amcs/article/view/4573
- DOI: https://doi.org/10.15593/2499-9873/2024.4.06
- Cite item
Abstract
The authors propose a model of the testing process in the notation of colored Petri nets. Before starting the simulation, the information flows of the process of mastering the discipline «Informatics» in IDEF3 notation by students of the Department of Applied Information Technologies of the ION RANEPA were studied. In the process of building the model, the following task was solved:let's give a Petri net consisting of a set of positions P = {p1, p2, ..., pn} and a set of transitionsT = {t1, t2, ..., tm}. The network simulates the testing process. Then there are such states of positions P that the following conditions are met for each transition T in the network:1. ∀ti ∈ T: (∀pi' ∈ Pred(tj): pi'(pj) = 1) → T(P) = 1, where Pred(tj) is the set of all preceding transition positions ti. 2. ∀tj ∈ T: tj(pj) = 1 → (∀p' ∈ Succ(tj): pj'(pj) = 1), where Succ(tj) is the set of all the following transition positions tj.That is, it is necessary to formalize the educational process using a colored Petri net. Find a labeling that can be achieved in a given colored Petri net that satisfies the following condition: there is a sequence of transitions (transactions) starting from the initial labeling, such that each subsequent labeling is obtained by applying the corresponding transition to the previous labeling. I.e.: ∃ M0: (initial labeling) → M*, where → M* denotes the reflexive and transitive closure of the transition relation in the Petri net.Solving the problem of the reachability of network labeling gave the concept of an optimal scenario for monitoring the development of competencies in the discipline: Some tasks and questions do not have to be included in the testing. Various scenarios for monitoring student progress are presented using the example of discipline testing. For example, one of the variants of the test scenario assumed the presence of a common resource with questions and assignments on the five topics under study. There were 50 questions in the database. The answer to each question can be rated from zero to 10 points. The test is considered passed if the student scored at least 41 points. The numbers of completed tasks and questions with the correct answer were also recorded.Another test option: 10 questions for each topic and the response time to the question (task) was recorded.A matrix analysis of the model was carried out. The vector of the initial marking μ(pi) = {47,1,1,1,0,0,0,0} and μk = {30, 0, 0, 0, 0, 0, 0, 41} at the end of testing. The analysis of the reachability of the μk marking allowed us to obtain one of the sequences of triggering transitions U k-1 = (t1, t3, t4, t3, t3, t4). Where transitions t1 – t4 fix the beginning and end of an elementary process (for example, the beginning of testing – the end of testing).The analysis of the model allowed us to investigate the dynamics of studying the topics of the discipline « Informatics »: how many times the student returned to re-reading the module materials, how many times he turned to additional material. Monitors attached to the transitions made it possible to determine the time for each operation and draw up protocols for studying the discipline.
Full Text
6About the authors
A. I Fedoseev
Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Institute of Social Sciences
L. A Ponomareva
Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Institute of Social Sciences
V. S Zabolotnikova
Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Institute of Social Sciences
References
- Iakushkin, O. Service-Oriented Petri Net Model / O. Iakushkin // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). – 2020. – Vol. 12254 LNCS. – P. 51–66.
- Petri, C. Communication with automata / C. Petri // Schriften des IIM. – 1962. – N. 3. – P. 16–27. – cited By 4.
- Alla, H. Continuous and hybrid Petri nets / H. Alla, R. David // Journal of Circuits, Systems and Computers. – 1998. – Vol. 8, no. 1. – P. 159–188.
- Башина, О.Э. Статистическое исследование потребности сферы торговли в кадрах / О.Э. Башина, О.С. Писецкая, А.И. Федосеев // Вестник кафедры статистики Российского экономического университета имени Г.В. Плеханова. Материалы и доклады / под общ. ред. Н.А. Садовниковой. – 2017. – С. 367–369.
- Ponomareva, L.A. Instrumental implementation of the educational process model to improve the rating of the universities / L.A. Ponomareva, S.V. Chiskidov, O.N. Romashkova // CEUR Workshop Proceedings. 9. Сер. «Selected Papers of the Proceedings of the 9th International Conference Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems, ITTMM 2019». – 2019. – P. 92–101.
- Автоматизация процесса многокритериального ранжирования студентов с помощью электронного портфолио / Л.А. Пономарева, О.Н. Ромашкова, А.Н. Белякова, В.С. Заболотникова // Вестник Донского государственного технического университета. – 2019. – Т. 19, № 4. – С. 382–388.
- Анализ данных в принятии управленческих решений / Л.А. Пономарева, П.Е. Голосов, А.Б. Мосягин, В.С. Заболотникова, И.А. Ронжина. – М., 2021.
- Современный подход к построению информационно-аналитической системы состояния и развития научной сферы в вузах / Н.В. Мамаева, Л.Б. Милютин, В.Н. Николенко, А.И. Федосеев. – М.: Открытое образование, 2014. – № 6(107). – С. 34–39.
- Федосеев, А.И. Статистические методы оценки состояния и перспектив развития социально-экономической политики в сфере потребительского рынка товаров и услуг г. Москвы (на примере предприятий шаговой (пешеходной) доступности): специальность 08.00.12 «Бухгалтерский учет, статистика»: дис. … канд. экон. наук. – М., 2005. – С. 186.
- Method of computeraided formation of organic compound descriptors for quantitative structure-property relationships / M.I. Kumskov, L.A. Ponomareva, E.A. Smolenskii, D.F. Mityushev, N.S. Zefirov // Известия Академии наук. Серия химическая. – 1994. – № 8. – С. 1391.
- Алтухова, Е.В. Проблемы и противоречия формирования кадрового потенциала сферы образования и науки / Е.В. Алтухова, А.И. Федосеев // Современные технологии управления. – 2014. – № 10 (46). – С. 2–5.
- Пономарева, Л.А. Автоматизированная система управления образовательной средой для повышения рейтинговой оценки вуза / Л.А. Пономарева, А.Б. Мосягин, П.Е. Голосов // Вестник Брянского государственного технического университета. – 2018. – № 4 (65). – С. 55–62.
- Середа, О.В. Применение модифицированного коэффициента корреляции для оценки выставочно-ярмарочной деятельности в России / О.В. Середа, А.И. Федосеев // Высшее образование для XXI века: проблемы воспитания: доклады и материалы XIV Международной научной конференции: в 2 ч., Москва, 14–16 декабря 2017 года. – Том Часть 2. – М.: Московский гуманитарный университет, 2017. – С. 231–238.
- Гурова, Т.И. Применение интеллектуальных систем в цифровой трансформации образования / Т.И. Гурова, В.С. Заболотникова // Математика и информатика в образовании и бизнесе: сборник материалов международной научно-практической конференции. – 2020. – С. 150–155.
- Гурова, Т.И. Интеллектуальные информационные системы в образовании / Т.И. Гурова, В.С. Заболотникова // Профессиональное развитие педагогических кадров в условиях обновления образования: сборник материалов VIII Городской научно-практической конференции. Сер.: Библиотека журнала «Интерактивное образование. – 2017. – С. 94–98.
Statistics
Views
Abstract - 29
PDF (Russian) - 5
Refbacks
- There are currently no refbacks.