Decision support systems (DSS) based on intelligent technologies. Architecture, design and usage of DSS in various sectors

Abstract


The article examines the role of decision support systems (DSS) in the management processes of organizations. It traces the path of DSS from the simplest data processing systems to modern platforms. It discusses key principles of DSS, such as data-driven decision making, user orientation, and application of system design principles. It considers the architecture of DSS, including the main components: database management systems (DBMS), model management systems (MMS), user interface (UI), and knowledge management components. It analyzes the types of architectures, their advantages, limitations, and approaches to DSS design. It focuses on the application of DSS in various sectors, from business and healthcare to urban planning. The article emphasizes the role of DSS in improving efficiency, supporting complex decisions, and implementing strategic initiatives. It also discusses a special type of DSS – fuzzy cognitive maps (FCM) and cognitive systems that extend the functionality of DSS by modeling complex relationships and providing dynamic strategies for system development. Ultimately, DSS are positioned as key tools for managing the complex and changing aspects of modern decision-making, with continuous innovation enhancing their strategic value and relevance.

Full Text

4

About the authors

А. V Petukhova

QuantumBlack

А. V Kovalenko

Kuban State University

References

  1. AI-Based Decision Support Systems in Industry 4.0: A Review / M. Soori, F.K. Ghaleh Jough, R. Dastres, B. Arezoo // Journal of Economy and Technology. – 2024. – № 08. – (In press). – doi: 10.1016/j.ject.2024.08.005
  2. Decision support systems for Agriculture 4.0: Survey and challenges / Z. Zhai, J.F. Martínez, V. Beltran, N.L. Martínez // Computers and Electronics in Agriculture. – 2020. – Vol. 170. – Art. 105256. – doi: 10.1016/j.compag.2020.105256
  3. Ocasio, W. Rise and Fall – or Transformation? The Evolution of Strategic Planning at the General Electric Company, 1940–2006 / W. Ocasio, J. Joseph // Long Range Planning. – 2008. – Vol. 41. – P. 248–272. – doi: 10.1016/j.lrp.2008.02.010
  4. An overview of clinical decision support systems: benefits, risks, and strategies for success / R.T. Sutton, D. Pincock, D.C. Baumgart, D.C. Sadowski, R.N. Fedorak, K.I. Kroeker // NPJ Digital Medicine. – 2020. – Vol. 3, Art 17 (2020). – doi: 10.1038/s41746-020-0221-y
  5. Humphreys, P. The Evolution Of Group Decision Support Systems To Enable Collaborative Authoring Of Outcomes / P. Humphreys, G. Jones // World Futures. – 2006. – Vol. 62, Iss. 3. – P. 193–222. – doi: 10.1080/02604020500509546
  6. McBride, N. The Rise and Fall of an Executive Information System: A Case Study / N. McBride // Information Systems Journal. – 1997. – Vol. 7, Iss. 4. – P. 277–287.
  7. Chen, Y. IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research / Y. Chen, J.E. Argentinis, G. Weber // Clinical Therapeutics. – 2016. – Vol. 38, № 4. – P. 688–701. – doi: 10.1016/j.clinthera.2015.12.001
  8. Zopounidis, C. Financial decision support: an overview of developments and recent trends / C. Zopounidis, M. Doumpos, D. Niklis // EURO Journal on Decision Processes. – 2018. – Vol. 6, № 1–2. – P. 63–76. – doi: 10.1007/s40070-018-0078-3
  9. Decision Support Systems and Intelligent Systems / E. Turban, J. E. Aronson, T. P. Liang. – New Delhi: Prentice-Hall of India, 2005. – 964 p.
  10. Decision Support Systems: Concepts and Resources for Managers / D.J. Power. – Westport, Conecticut: Quorum Books, 2002. – 251 p.
  11. Little, J.D.C. Models and Managers: The Concept of a Decision Calculus / J.D.C. Little // Management Science. – 1970. – Vol. 16, № 8. – P. 466–485.
  12. Zaraté, P. An Overview of Supports for Collective Decision Making / P. Zaraté, J.L. Soubie // Journal of Decision Systems. – 2004. – Vol. 13, № 2. – P. 211–221. – doi: 10.3166/jds.13.211-221.
  13. Management Information Systems / J.A. O'Brien, G.M. Marakas; 10th edition. – New York: McGraw-Hill Irwin, 2011. – 722 p.
  14. Hauser, J.R. The House of Quality / J.R. Hauser, D. Clausing // Harvard Business Review. – 1988. – Vol. 66, № 3. – P. 63–73.
  15. Kapucu, N. Collaborative Decision-Making in Emergency and Disaster Management / N. Kapucu, V. Garayev // International Journal of Public Administration. – 2011. – Vol. 34. – P. 366–375. doi: 10.1080/01900692.2011.561477
  16. Design science in information systems research / A.R. Hevner, S.T. March, J. Park, S. Ram // MIS Quarterly. – 2004. – Vol. 28, № 1. – P. 75–105. doi: 10.2307/25148625
  17. Integration of decision support systems to improve decision support performance / S. Liu, A.H.B. Duffy, R.I. Whitfield [et al.] // Knowledge and Information Systems. – 2010. – Vol. 22. – P. 261–286. doi: 10.1007/s10115-009-0192-4
  18. Decision Support and Business Intelligence Systems / E. Turban, R. Sharda, D. Delen; 9th edition. – New Jersey: Pearson, 2011. ¬ 715 p.
  19. Decision Support Systems in the 21st Century / G.M. Marakas; 2nd edition. – New Jersey: Prentice Hall, 2003. – 648 p.
  20. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking / F. Provost, T. Fawcett. – Sebastopol, California: O'Reilly Media. – 2013. – 420 p.
  21. Arnott, D. A critical analysis of decision support systems research / D. Arnott, G. Pervan // Journal of Information Technology. – 2005. – Vol. 20, № 2. – P. 67–87. – doi: 10.1057/palgrave.jit.2000035
  22. Building Effective Decision Support Systems / R.H. Sprague, E.D. Carlson. – New Jersey: Prentice Hall, 1982. – 358 p.
  23. Competing on Analytics: The New Science of Winning / T.H. Davenport, J.G. Harris. – Boston, Massachusetts: Harvard Business Review Press, 2007. – 328 p.
  24. Applications of Artificial Intelligence for Health Informatics: A Systematic Review / M. Hasan, M. Islam, M. Islam, D. Chen, C. Sanin, G. Xu // Journal of Artificial Intelligence for Medical Sciences. – 2023. – Vol. 4, № 2. – P. 19–46. – doi: 10.55578/joaims.230920.001
  25. Wasylewicz, A.T.M. Clinical Decision Support Systems / A.T.M. Wasylewicz, A.M.J.W. Scheepers-Hoeks // Fundamentals of Clinical Data Science / Kubben P., Dumontier M., Dekker A. (eds.). – Cham: Springer, 2019. – P. 153–169. – doi: 10.1007/978-3-319-99713-1_11
  26. Minhas, M.R. Decision Support Systems in Construction: A Bibliometric Analysis / M.R. Minhas, V. Potdar // Buildings. – 2020. – Vol. 10, № 6. – Art. 108. – doi: 10.3390/buildings10060108
  27. Kosko, B. Fuzzy cognitive maps / B. Kosko // International Journal of Man-Machine Studies. – 1986. – Vol. 24, № 1. – P. 65–75. – doi: 10.1016/S0020-7373(86)80040-2
  28. Salmeron, J. Supporting decision makers with fuzzy cognitive maps: These extensions of cognitive maps can process uncertainty and hence improve decision making in R&D applications / J. Salmeron // Research Technology Management. – 2009. – Vol. 52. – P. 53–59.
  29. Alexander, D. Cognitive Mapping as an Emergency Management Training Exercise / D. Alexander // Journal of Contingencies and Crisis Management. – 2005. – Vol. 12, № 4. – P. 150–159. – doi: 10.1111/j.0966-0879.2004.00445.x
  30. Multi-Criteria Decision Making using Fuzzy Cognitive Maps – Preliminary Results / M. Ketipi, E. Karakasis, D. Koulouriotis, D. Emiris // Procedia Manufacturing. – 2020. – Vol. 51. – P. 1305–1310. – doi: 10.1016/j.promfg.2020.10.182
  31. Sustainability evaluation of urban large-scale infrastructure construction based on dynamic fuzzy cognitive map / H. Chen, S. Cheng, Y. Qin, W. Xu, Y. Liu // Journal of Cleaner Production. – 2024. – Vol. 449. – Art. 141774. – doi: 10.1016/j.jclepro.2024.141774
  32. Петухова, А. В. Использование нечетких когнитивных карт для решения задачи развития муниципальных образований / А. В. Петухова, А. В. Коваленко, М. В. Шарпан // Инженерный вестник Дона. – 2024. – № 2(110). – С. 238–262. – EDN LTRFOG. – URL: http://www.ivdon.ru/uploads/article/pdf/IVD_31__2y24_petukhova_kovalenko_sharpan.pdf_51a5d2d775.pdf.
  33. “Cities go smart! ”: A system dynamics-based approach to smart city conceptualization / S.A.S. Nunes, F.A.F. Ferreira, K. Govindan, L.F. Pereira // Journal of Cleaner Production. – 2021. – Vol. 313. – Art. 127683. – doi: 10.1016/j.jclepro.2021.127683
  34. Lombardi, P. New spatial decision support systems for sustainable urban and regional development / P. Lombardi, V. Ferretti // Smart and Sustainable Built Environment. – 2015. – Vol. 4, № 1. – P. 45–66. – doi: 10.1108/SASBE-07-2014-0039
  35. Petukhova, A.V. Retail System Scenario Modeling Using Fuzzy Cognitive Maps / A.V. Petukhova, N. Fachada // Information. – 2022. – Vol. 13, № 5. – Art. 251. – doi: 10.3390/info13050251
  36. Петухова, А. В. Решение обратной задачи моделирования для предприятия розничной торговли с использованием теории нечетких когнитивных карт / А. В. Петухова // Инженерный вестник Дона. – 2023. – № 3(99). – С. 135-146. – EDN NWRJXL. – URL: http://www.ivdon.ru/uploads/article/pdf/IVD_25__2_petukhova_20230309.pdf_240c1c789a.pdf
  37. Петухова, А.В. Риски использования нечетких когнитивных карт при управлении бизнес-процессами / А.В. Петухова, А.В. Коваленко, А.В. Овсянникова // Современная математика и концепции инновационного математического образования. – 2022. – № 1. – С. 171–177.

Statistics

Views

Abstract - 2

PDF (Russian) - 0

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies