An overview of the directions and existing solutions for the application of artificial intelligence algorithms in construction

Abstract


Применение алгоритмов искусственного интеллекта в рутинных задачах, где имеются большие данные, играет ключевую роль в развитии любой отрасли, в том числе и в строительной. Алгоритмы машинного обучения широко применяются в зарубежных странах, а также набирают популярность научные исследования в данном направлении. Несмотря на интерес к применению искусственного интеллекта, к сожалению, как в российской практике, так и в научных исследованиях в строительной области его применение практически не затрагивается. Цель данного исследования состоит в рассмотрении существующих российских и зарубежных практик применения алгоритмов искусственного интеллекта в инженерных расчетах и наметка архитектуры будущей автоматизированной системы перевода ведомостей объемов работ и дефектных ведомостей в сметную документацию. Эта работа является одним из первых исследований в области применения алгоритмов искусственного интеллекта в дефектно-сметной документации. В будущем это поможет существенно сократить издержки компаниям строительной отрасли и внесет вклад как в практическую, так и в научно-исследовательскую деятельность.

Full Text

4

About the authors

O. V Levanova

Perm State University

N. V Kravtsov

St. Petersburg State University of Architecture and Civil Engineering

M. D Ivushkin

Perm State University

A. V Sokolov

Perm State University; ANO VO “Innopolis University”

I. P Seletkov

Perm State University

N. P Biserova

Perm State University

S. V Rusakov

Perm State University

References

  1. Городнова, Н.В. Применение искусственного интеллекта и нанотехнологий в инвестиционно-строительной сфере России / Н.В. Городнова // Вестник НГУЭУ. – 2021. – № 3 – С. 81–95.
  2. Эволюция от простого описания бизнес-процессов к цифровым двойникам предприятий / А.И. Сухоруков, В.В. Семикашев, С.Ю. Ерошкин, А.С. Терентьева, М.С. Гайворонская, Е.В. Швецов // Научные труды Институт народнохозяйственного прогнозирования РАН. – 2024. – № 2. – С. 95–123.
  3. Каракозова, И.В. Создание электронной базы нормативных наблюдений в условиях цифровизации в строительстве / И.В. Каракозова, И.М. Лисицын, К.В. Болдышев // Вестник МГСУ. – 2023. – Вып. 18, № 8. – С. 1306–1317.
  4. Шумов, В.Н. Трансформация строительных технологий под влиянием ИИ / В.Н. Шумов // Международный научный журнал «Символ науки». – 2024. – С. 87–97.
  5. Марчук, Е.С. Анализ систем проведения сметных расчетов и подготовки сметной документации в строительстве / Е.С. Марчук // StudNet. Общество с ограниченной ответственностью «Электронная наука». – 2020. – Т. 3, № 5. – С. 421–424
  6. Smeta.ai [Электронный ресурс]. – URL: https://smeta.ai/ (дата обращения: 05.02.2025).
  7. Генерация сметы на основе искусственного интеллекта [Электронный ресурс]. – URL: https://freesmetaonline.ru/beforeNewSmetaAI (дата обращения: 09.01.2025).
  8. Quantity Surveyor-Free AI-Powered BOQ Generation [Электронный ресурс]. – URL: https://www.yeschat.ai/gpts-9t55QeOYviu-Quantity-Surveyor (дата обращения: 15.01.2025).
  9. Quantity Surveyor Pro-Free Quantity Calculation Tool [Электронный ресурс]. – URL: https://www.yeschat.ai/gpts-9t55QeOYvis-Quantity-Surveyor-Pro (дата обращения: 15.01.2025).
  10. Construction Estimator-Free Quick Construction Estimates [Электронный ресурс]. – URL: https://www.yeschat.ai/gpts-9t56NAwtw3e-Construction-Estimator (дата обращения: 15.01.2025).
  11. Quantity Surveyor-Free BOQ generation for construction projects. [Электронный ресурс]. – URL: https://theee.ai/tools/quantity-surveyor-2OToEizlDv (дата обращения: 16.01.2025).
  12. AI in BoQs – Kreo [Электронный ресурс]. – URL: https://www.kreo.net/news-2d-takeoff/ai-in-bills-of-quantities (дата обращения: 16.01.2025).
  13. CUBE – Streamline Construction Cost Estimation with AI [Электронный ресурс]. – URL: https://www.cubeestimates.com/ (дата обращения: 16.01.2025).
  14. How to Estimate Construction Costs | Togal.ai [Электронный ресурс]. – URL: https://www.togal.ai/blog/estimate-construction-costs (дата обращения: 17.01.2025).
  15. Dynamic cost estimating directly from your 3D model - BibLus [Электронный ресурс]. – URL: https://biblus.accasoftware.com/en/dynamic-cost-estimating-directly-from-your-3d-model/#Dynamic_cost_estimating_from_a_3D_model (дата обращения: 17.01.2025).
  16. Лемешкин, А.В. Инновационные методы контроля качества в строительстве: новые возможности и технологии / А.В. Лемешкин // Экономика строительства. Общество с ограниченной ответственностью «Русайнс». – 2023. – № 5. – C 80–84.
  17. Тыллануров, Ы. Применение методов машинного обучения в инженерной механике: анализ данных и прогнозирование поведения механических систем / Ы. Тыллануров, М. Аллагулыев // Вестник науки. – 2024. – Т. 1, № 7. – С. 663–665.
  18. Хамракулов, Р.Д. Оптимизация конструкции железобетонных балок с использованием алгоритмов машинного обучения / Р.Д. Хамракулов // Экономика и социум. – 2024. – № 11-2. – С. 912–915.
  19. Мордовские ученые с помощью ИИ разработали высокофункциональный строительный материал [Электронный ресурс]. – URL: https://minobrnauki.gov.ru/press-center/news/nauka/91423/ (дата обращения: 01.02.2025).
  20. Bang, S. Artificial Intelligence in Construction Projects: A Systematic Scoping Review / S. Bang, N. Olsson // Journal of Engineering, Project, and Production Management. Engineering Project and Production Management. – 2022. – Vol. 12, no. 3. – P. 224–238.
  21. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges / S.O. Abioye [et al.] // Journal of Building Engineering. Elsevier Ltd. – 2021. – Vol. 44.
  22. Akinadé, O.O. BIM-based software for construction waste analytics using artificial intelligence hybrid models / O.O. Akinadé. – 2017.
  23. Liu, Q. Application and research of artificial intelligence in civil engineering intelligent construction / Q. Liu // Theoretical and Natural Science. – 2023. – Vol. 26, no. 1. – P. 30–36.
  24. Wu, X. Use of neural networks in detection of structural damage / X. Wu, J. Ghaboussi, J.H. Garrett // Comput Struct. – 1992. – Vol. 42, no. 4. – P. 649–659.
  25. Mitropoulou, C.C. Developing fragility curves based on neural network IDA predictions / C.C. Mitropoulou, M. Papadrakakis // Eng Struct. – 2011. – Vol. 33, no. 12. – P. 3409–3421.
  26. Kamolov, S. Machine learning methods in civil engineering: a systematic review / S. Kamolov // Annals of Mathematics and Computer Science. Gulf Journal of Mathematics. – 2024. – Vol. 21. – P. 181–191.
  27. Application of Artificial Intelligence (AI) in Civil Engineering / T.F. Awolusi [et al.] // Studies in Systems, Decision and Control. – 2025. – Vol. 547. – P. 15–46.
  28. Huang, J.S. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites / J.S. Huang, J.X. Liew, K.M. Liew // Compos Struct. Elsevier Ltd. – 2021. – Vol. 267.
  29. Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete / T.F. Awolusi [et al.] // Heliyon. – 2019. – Vol. 5, no. 1.
  30. Predicting Crack Width in CFRP-Strengthened RC One-Way Slabs Using Hybrid Grey Wolf Optimizer Neural Network Model / S.V. Razavi Tosee [et al.] // Buildings. – 2022. – Vol. 12, no. 11.
  31. Park, D.Y. Construction Cost Prediction Using Deep Learning with BIM Properties in the Schematic Design Phase / D.Y. Park, S.H. Yun // Applied Sciences (Switzerland). – 2023. – Vol. 13, no. 12.
  32. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges / S.O. Abioye [et al.] // Journal of Building Engineering. – 2021. – Vol. 44.
  33. Abbas, E.F. Automat Bill of Quantities for School Buildings Projects Using BIM / E.F. Abbas, E.F. Abbas, F.M.S. Al-Zwainy // Tikrit Journal of Engineering Sciences. – 2024. – Vol. 31, no. 3. – P. 125–142.
  34. Deepa, G. A hybrid machine learning approach for early cost estimation of pile foundations / G. Deepa, A.J. Niranjana, A.S. Balu // Journal of Engineering, Design and Technology. Emerald Publishing. – 2023.
  35. Developing preliminary cost estimates for foundation systems of high-rise buildings / A. Rashad [et al.] // International Journal of Construction Management. – 2024.
  36. Rane, N. Role of ChatGPT and Similar Generative Artificial Intelligence (AI) in Construction Industry / N. Rane // Social Science Research Network. – 2023.
  37. Integrating Building Information Modelling and Artificial Intelligence in Construction Projects: A Review of Challenges and Mitigation Strategies / A.A. Khan [et al.] // Technologies (Basel). Multidisciplinary Digital Publishing Institute (MDPI). – 2024. – Vol. 12, no. 10.
  38. Arba, D. Future Directions of Cost and Productivity Estimating using Artificial Intelligence (AI) 1 / D. Arba. – 2021.
  39. Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle / C.N. Egwim [et al.] // Energies. – 2024. – Vol. 17. – P. 182.
  40. Sun, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review / H. Sun, H.V. Burton, H. Huang // Journal of Building Engineering. – 2021. – Vol. 33.
  41. Lu, J. Application of Artificial Intelligence Technology in Bridge Construction and Maintenance / J. Lu // Highlights in Science, Engineering and Technology. – 2023. – Vol. 75. – P. 330–337.
  42. В Томске исследователи учат искусственный интеллект вести мониторинг состояния дорог и мостов [Электронный ресурс]. – URL: https://minobrnauki.gov.ru/press-center/news/novosti-podvedomstvennykh-uchrezhdeniy/50655/ (дата обращения: 01.02.2025).
  43. Brown, L. Natural Language Processing Techniques for Construction Document Management / L. Brown, P. Green // Journal of Computing in Civil Engineering. – 2019. – Vol. 33(4). – 04019025.
  44. Manning, C.D. Foundations of Statistical Natural Language Processing / C.D. Manning, H. Schütze // MIT Press. – 1999.
  45. Devlin, J. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding / J. Devlin, M.W. Chang, K. Lee, K. Toutanova // NAACL-HLT. – 2019. – 4171–4186.
  46. Honnibal, M. spaCy 2: Natural Language Understanding with Bloom Embeddings / M. Honnibal, I. Montani // arXiv preprint arXiv. – 2017. – 1710.09412,
  47. Kim, G.H. Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning / G.H. Kim, S.H. An, K.I. Kang, // Building and Environment. – 2004. – Vol. 39(10). – P. 1235–1242.
  48. Marinelli, M. Non-parametric bill-of-quantities estimation of concrete road bridges' superstructure: An artificial neural networks approach. In A.B. Raidén & E. Aboagye-Nimo (Eds.), Proceedings of the 31st Annual ARCOM Conference / M. Marinelli, L. Dimitriou, N. Fragkakis, S. Lambropoulos // Association of Researchers in Construction Management. – 2015. – P 853–862.
  49. García de Soto, B. A hybrid methodology to estimate construction material quantities at an early project phase / B. García de Soto, B.T. Adey, D. Fernando // International Journal of Construction Management. – 2016.
  50. Gransberg, D.D. Top-down construction cost estimating model using an artificial neural network: Project summary report (MDT Project Number: 8227-001) / D.D. Gransberg, H.D. Jeong, I. Karaca, B. Gardner // Iowa State University, Institute for Transportation. – 2016.
  51. Hakami, W. Preliminary construction cost estimate in Yemen by artificial neural network / W. Hakami, A. Hassan //Baltic Journal of Real Estate Economics and Construction Management. – 2019. – Vol. 7(1). – P. 110–122.

Statistics

Views

Abstract - 25

PDF (Russian) - 25

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies