КВАЗИОСОБЫЕ УПРАВЛЕНИЯ В ОДНОЙ ЗАДАЧЕ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ С ПЕРЕМЕННОЙ СТРУКТУРОЙ, ОПИСЫВАЕМОЙ СИСТЕМОЙ ГУРСА - ДАРБУ

Аннотация


Изучается одна задача оптимального управления с переменной структурой, описываемая системой Гурса - Дарбу. В предположении выпуклости области управления установлено необходимое условие оптимальности в форме линеаризованного условия максимума. Рассмотрен случай вырождения линеаризованного условия максимума (квазиособый случай). Установлены необходимые условия оптимальности квазиособых управлений.

Полный текст

Введение Среди задач оптимального управления особое место занимают задачи оптимального управления системами Гурса - Дарбу. Разработка теории необходимых условий оптимальности первого порядка типа принципа максимума начата А.И. Егоровым [1, 2]; в работах О.В. Васильева [3, 4] строится теория особых управлений для таких систем. Обзор работ, посвященных необходимым и достаточным условиям оптимальности, теоремам существования оптимальных решений и скользящим режимам в системах Гурса - Дарбу можно найти в работах [5-20]. На практике многие процессы являются многоэтапными, т.е. имеют переменную структуру [21-25]. Задачи оптимального управления подобными системами называются задачами оптимального управления составными системами [23] или системами с переменной структурой [25]. Ряд задач оптимального управления, описываемых обыкновенными дифференциальными уравнениями, исследован в работах [21-25]. Настоящая работа посвящена исследованию одной задачи оптимального управления с переменной структурой, которая описывается системой Гурса - Дарбу. В предположении выпуклости области управления установлено необходимое условие оптимальности в форме линеаризованного условия максимума [26-30]. Далее рассмотрен случай вырождения линеаризованного условия максимума (квазиособый случай [30]). В квазиособом случае найдены необходимые условия оптимальности квазиособых управлений в интегральной форме. При этом используется схема, предложенная и развитая в работах [12, 32-37]. 1. Постановка задачи Предположим, что управляемый процесс описывается системой дифференциальных уравнений гиперболического типа: , (1) (2) с краевыми условиями (3) , (4) , где - n-мерная, а - m-мерная вектор-функции, непрерывные по совокупности переменных вместе с частными производными по третьему и четвертому аргументам до второго порядка включительно; - дважды непрерывно дифференцируемая вектор-функция; , - липшицевы функции, - заданные числа, причем , , - r-мерная, а - -мерная измеримые и ограниченные (в и соответственно) вектор-функции со значениями в заданных непустых, ограниченных и выпуклых множествах и , т.е. (5) Пару , удовлетворяющую приведенным ограничениям, назовем допустимым управлением. Предполагается, что каждому допустимому управлению соответствует единственное абсолютно непрерывное (в смысле [5, 6]) решение краевой задачи (1)-(4). На решениях краевой задачи (1)-(4), порожденных всевозможными допустимыми управлениями, определим терминального типа функционал . (6) Допустимое управление , доставляющее минимум функционалу (6) при ограничениях (1)-(4), назовем оптимальным управлением, а соответствующий процесс - оптимальным процессом. В работе при предположении существовании оптимального управления устанавливаются необходимые условия оптимальности. 2. Специальное приращение критерия качества Предположим, что - фиксированное допустимое управление, а , где - произвольное допустимое управления. Через и обозначим соответствующие им решения краевой задачи (1)-(4). Тогда ясно, что приращение состояния будет решением краевой задачи , (7) (8) , (9) (10) . Через , , обозначим пока неизвестные, n- и m-мерные соответственно вектор-функции. Домножим обе части равенства (7) слева скалярно на и проинтегрируем по области ; аналогично домножим равенство (9) на и проинтегрируем по области . Введя обозначения , , получим (11) (12) Здесь и в дальнейшем штрих обозначает операцию транспонирования. Считая , , достаточно гладкими вектор-функциями и учитывая краевые условия (8), (10), несложно убедиться в справедливости тождеств С учетом (11), (12) и равенства запишем формулу для приращения критерия качества (6) в виде (13) Полагая , и используя формулу Тейлора, из (13) получим (14) Здесь и в дальнейшем - величина более высокого порядка, чем , т.е. при , а есть норма вектора , определяемая формулой . Если предполагать, что , , удовлетворяют соотношениям , (15) , , , (16) , (17) , , , (18) то формула приращения (14) примет вид (19) Краевую задачу (15)-(18) назовем сопряженной системой в задаче оптимального управления (1)-(6). Поскольку множества и выпуклые, то специальное приращение допустимого управления можно определить по формуле (20) где - произвольное число, , а и - произвольные измеримые и ограниченные соответственно r- и q-мерные вектор-функции со значениями в и соответственно. Через обозначим специальное приращение состояния , отвечающее специальному приращению (20) управления . Из оценок, установленных в [1-3, 8, 10], следует, что , (21) , (22) где , - некоторые положительные постоянные. Из (22) с учетом (21) получаем, что , (23) где - некоторое положительное число. Из оценок (21), (23) следует, что и имеют порядок малости . Из краевых задач (7)-(10) получаем, что является решением линеаризованной краевой задачи (24) (25) (26) (27) При помощи (24)-(27) по схеме, аналогичной примененной в работе [30], доказывается: Теорема 1. Для специального приращения состояния имеют место представления (28) где является решением краевой задачи (29) (30) (31) (32) Используя равенства (28) и (20), из формулы приращения (19) получаем: (33) Специальное приращение (33) функционала качества (6) позволяет получить различные необходимые условия оптимальности. 3. Необходимые условия оптимальности Из разложения (33) следует, что вдоль оптимального процесса Отсюда в силу произвольности имеем В последнем неравенстве по очереди полагая и , приходим к следующему утверждению: Теорема 2. Для оптимальности допустимого управления в задаче (1)-(6) необходимо, чтобы выполнялись соотношения: , , (34) , . (35) Соотношения (34), (35) являются аналогом интегрального линеаризованного условия максимума Понтрягина (см. например, [26-29, 31]). Применяя двумерный аналог леммы из [38, с. 8], получаем поточечное линеаризованное условие максимума. Теорема 3. Для оптимальности допустимого управления в задаче (1)-(6) необходимо, чтобы для всех , и , выполнялись неравенства , (36) . (37) Здесь и в дальнейшем - произвольная точка Лебега (или правильная точка, см. [6, 9, 11, 12]) управления . Теперь рассмотрим случай вырождения необходимого условия оптимальности (36), (37). Следуя [30], введем: Определение 1. Допустимое управление назовем квазиособым управлением в задаче (1)-(6), если для всех , и , выполняются соотношения (38) В квазиособом случае из разложения (33) с учетом (38) следует Теорема 4. Для оптимальности квазиособого управления необходимо, чтобы неравенство (39) выполнялось для всех , и всех , . Неравенство (39) есть неявное необходимое условие оптимальности квазиособых управлений. С его помощью удается получить необходимое условие оптимальности, выраженное через параметры задачи (1)-(6). Через обозначим решения матричных интегральных уравнений: , , . . Уравнения (29), (31) являются линейными неоднородными дифференциальными уравнениями гиперболического типа с краевыми условиями Гурса (30), (32) соответственно. Решения краевых задач (29)-(30) и (31)-(32) допускают соответственно следующие представления [39]: (40) (41) Из (41) получим Поскольку последнее соотношение имеет вид (42) Вводя обозначения , и принимая во внимание представление (40), из (42), получаем Далее, используя формулу Дирихле [28], имеем (43) Полагая перепишем формулу (43) в окончательном виде: (44) Представления (40), (44) позволяют вывести необходимые условия оптимальности второго порядка, явно выраженные через параметры задачи (1)-(6). Используя произвольность и , предположим, что . Тогда неравенство (37) примет вид (45) При этом представление (44) примет вид . (46) На основе соотношений (40), (46) доказывается справедливость тождеств: (47) (48) (49) (50) Введя обозначение и учитывая тождества (47)-(50), из неравенства (45) получим (51) Теперь предположим, что , . В этом случае неравенство (37) примет вид (52) где Используя это представление, получим (53) (54) Отметим, что справедливо следующее тождество: (55) Введя обозначение и учитывая тождества (53)-(55), из неравенства (52) получим (56) Таким образом, доказана Теорема 5. Для оптимальности квазиособой экстремали в задаче (1)-(6) необходимо, чтобы неравенства (51) и (56) выполнялись для всех , и соответственно. Неравенства (51) и (56) являются довольно общими интегральными условиями оптимальности квазиособых управлений. Из них при некоторых дополнительных предположениях можно получить ряд легко проверяемых необходимых условий оптимальности квазиособых управлений и, в частности, исследовать квазиособые второго порядка [12, 33-36] управления. Заключение Изучена одна задача оптимального управления с переменной структурой, описываемая системой нелинейных гиперболических уравнений с краевыми условиями Гурса. Применен один вариант метода приращений, на основе которого получено специальное разложение второго порядка функционала качества. С его помощью установлен аналог линеаризованного условия максимума. Рассмотрен случай вырождения линеаризованного условия максимума (квазиособый случай). Установлено необходимое условие оптимальности квазиособых управлений.

Об авторах

К. Б Мансимов

Институт Систем управления НАН Азербайджана; Бакинский государственный университет

Ш. Ш Сулейманова

Институт Систем управления НАН Азербайджана

Список литературы

  1. Егоров А.И. Об оптимальном управлении процессами в некоторых системах с распределенными параметрами // Автоматика и телемеханика. - 1964. - № 5. - С. 613-623.
  2. Егоров А.И. Оптимальные процессы в системах с распределенными параметрами и некоторые задачи инвариантности // Изв. АН СССР. Сер. Математика. - 1965. - Т. 29, № 6. - С. 1205-1260.
  3. Васильев О.В. Об оптимальности особых управлений в системах с распределенными параметрами // Управляемые системы. - Новосибирск, 1972. - Вып. 10. - С. 27-34.
  4. Васильев О.В. Принцип максимума в теории оптимальных систем с распределенными параметрами // Прикладная математика. - Новосибирск, 1976. - С. 109-138.
  5. Плотников В.И., Сумин В.И. Оптимизация объектов с распределенными параметрами, описываемые системой Гурса - Дарбу // Журн. вычисл. мат. и матем. физики. - 1972. - № 1. - С. 61-77.
  6. Новоженов М.М., Сумин В.И., Сумин М.И. Методы оптимального управления системами математической физики. - Горький: Изд-во Горьков. гос. ун-та, 1986. - 87 с.
  7. Ахмедов К.Т., Ахиев С.С. Необходимые условия оптимальности для некоторых задач теории оптимального управления // Докл. АН Азерб. ССР. - 1972. - № 5. - С. 12-16.
  8. Васильев О.В., Срочко В.А., Терлецкий В.А. Методы оптимизации и их приложения: в 2 ч. Оптимальное управление. - Новосибирск: Наука, 1990. - Ч. 2. - 151 с.
  9. Сумин В.И. Функциональные вольтерровы уравнения в теории оптимального управления распределенными системами: в 2 ч. - Нижний Новгород, 1992. - Ч. 1. - 110 с.
  10. Срочко В.А. Вариационный принцип максимума и методы линеаризации в задачах оптимального управления. - Иркутск: Изд-во Иркут. гос. ун-та, 1989. - 160 с.
  11. Лисаченко И.В., Сумин В.И. Принцип максимума для терминальной задачи оптимизации системы Гурса - Дарбу в классе функций с суммируемой смешанной производной // Вестник Удмуртск. ун-та. Матем.-мех. компьют. науки. - 2011. - № 2. - С. 52-67.
  12. Мансимов К.Б., Марданов М.Дж. Качественная теория оптимального управления системами Гурса - Дарбу. - Баку: ЭЛМ, 2010. - 360 с.
  13. Меликов Т.К. Особые в классическом смысле управления в системах Гурса - Дарбу. - Баку: ЭЛМ, 2003. - 96 с.
  14. Багиров А.М. Некоторые вопросы теории оптимальных скользящих режимов в системах с распределенными параметрами: автореф. дис. … канд. физ.-мат. наук. - Баку, 1982. - 46 с.
  15. Багиров А.М. Многомерная апроксимационная лемма и некоторые ее применения // Деп. в ВИНИТИ АН СССР, № 3431-80. - 46 с.
  16. Матвеев А.С., Якубович В.А. Абстрактная теория оптимального управления. - СПб.: Изд-во С.-Петербург. ун-та, 1994. - 362 с.
  17. Марданов М.Дж. Исследование оптимальных процессов с запаздываниями при наличии ограничений: автореф. дис. … д-ра физ.-мат. наук. - Киев, 1989. - 28 с.
  18. Матвеев А.С., Якубович В.А. Оптимальное управление некоторыми системами с распределенными параметрами // Сиб. матем. журнал; 1978. - № 5. - С. 1109-1140.
  19. Suryanarayana M.B. Necessary conditions for optimization problems with hyperbolic partial diferential equations // SIAM Journal on Control. - 1973. - Vol. 11, № 1. - P. 130-147.
  20. Гасанов К.К. О существовании оптимальных управлений для процессов, описываемых системой гиперболических уравнений // Журн. вычисл. мат. и матем. физики. - 1973. - № 3. - C. 599-608.
  21. Исмайлов Р.Р., Мансимов К.Б. Об условиях оптимальности в одной ступенчатой задаче управления // Журн. вычисл. мат. и матем. физики. - 2006. - № 10. - C. 1158-1170.
  22. Розова В.Н. Оптимальное управление ступенчатыми системами с неинтегральными функционалом // Вестник РУДН. Сер. Прикл. и комп. математика. - 2002. - № 1 (1). - C. 131-136.
  23. Величенко В.В. Оптимальное управление составными системами // Докл. АН СССР. - 1967. - Т. 176, № 4. - С. 754-756.
  24. Габелко К.Н. Последовательное улучшение многоэтапных процессов // Автоматика и телемеханика. - 1974. - № 11. - С. 72-80.
  25. Никольский М.С. Об одной вариационной задаче с переменной структурой // Вестник МГУ. Сер. Вычислит. матем. и кибернетика. - 1987. - № 1. - С. 36-41.
  26. Методы оптимизации / Р. Габасов, Ф.М. Кириллова, В.В. Альсевич [и др.]. - Минск: Четыре четверти, 2011. - 472 с.
  27. Габасов Р., Кириллова Ф.М. Принцип максимума в теории оптимального управления. - М., 2013. - 272 с.
  28. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. - М.: Физматлит, 2005. - 335 с.
  29. Демьянов В.Ф., Рубинов А.М. Приближенные методы решения экстремальных задач. - Л.: Изд-во ЛГУ, 1968. - 168 с.
  30. Габасов Р., Кириллова Ф.М. Особые оптимальные управления. - М.: Либроком, 2013. - 256 с.
  31. Абдуллаев А.А., Мансимов К.Б. Необходимые условия оптимальности в процессах, описываемых системой интегральных уравнений типа Вольтерра. - Баку: ЭЛМ, 2013. - 224 с.
  32. Мансимов К.Б. Об одной схеме исследования особого случая в системах Гурса - Дарбу // Изв. АН Азербайджана. - 1981. - № 2. - C. 100-104.
  33. Мансимов К.Б. Об оптимальности квазиособых управлений в системах Гурса - Дарбу // Дифференц. уравнения. - 1996. - № 10. - C. 1952-1960.
  34. Мансимов К.Б. Интегральные необходимые условия оптимальности квазиособых управлений в системах Гурса - Дарбу // Автоматика и телемеханика. - 1993. - № 5. - C. 36-43.
  35. Мансимов К.Б. Необходимые условия оптимальности особых процессов в задачах оптимального управления: автореф. дис. … д-ра физ.-мат. наук. - Баку: Изд-во Бакин. гос. ун-та, 1994. - 42 с.
  36. Мансимов К.Б. К теории необходимых условий оптимальности в одной задаче с распределенными параметрами // Журн. вычисл. матем. и матем. физ. - 2001. - № 10. - С. 1505-1520.
  37. Мансимов К.Б. Условия оптимальности второго порядка в системах Гурса - Дарбу при наличии ограничений // Дифференц. уравнения. - 1990. - № 6. - С. 954-965.
  38. Срочко В.А. Вычислительные методы оптимального управления. - Иркутск: Изд-во Иркут. гос. ун-та, 1982. - 110 с.
  39. Ахиев С.С., Ахмедов К.Т. Об интегральном представлении решений некоторых дифференциальных уравнений // Изв. АН Азерб. Сер. физ.-техн. и матем. наук. - 1973. - № 2. - С. 116-120.

Статистика

Просмотры

Аннотация - 76

PDF (Russian) - 23

Ссылки

  • Ссылки не определены.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах