Анализ влияния порядка аппроксимации конечных элементов на контактное деформирование защитного полимерного слоя
- Авторы: Каменских А.А.1, Крысина А.С.1, Панькова А.П.1
- Учреждения:
- Пермский национальный исследовательский политехнический университет
- Выпуск: № 2 (2023)
- Страницы: 17-32
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/amcs/article/view/3834
- DOI: https://doi.org/10.15593/2499-9873/2023.2.02
- Цитировать
Аннотация
Реализация задач с использованием метода конечных элементов (МКЭ) связана, в первую очередь, с правильным подбором порядка аппроксимации функций формы, моделей поведения материалов, анализом характера сопряжения и выбором методик реализации. Выбор параметров численного решения влияет на вычислительные процедуры. Решается задача о подборе параметров МКЭ и методов ее реализации, позволяющая получить рациональное соотношение времени счета и качества решения. Симплекс-элементы обладают функциями формы с линейными зависимостями от координат. Реализация МКЭ с использованием симплекс-элементов зарекомендовала себя за последние десятилетия. При этом можно отметить неточности описания криволинейных границ объектов исследования, что может вносить дополнительные неточности в численное решение задачи. Элементы второго порядка позволят описывать криволинейные границы, но требуют больших затрат вычислительных мощностей, особенно при нелинейных задачах механики. Развитие численных прикладных программных пакетов с использованием сеточных методов и ресурсов вычислительной техники на настоящий момент позволяет оценивать влияния степени аппроксимации МКЭ на решение задачи. В рамках исследования установлено, что в точке первоначального контакта «сталь - полимер» наблюдается увеличение погрешности численного решения. Для анализа влияния порядка аппроксимации МКЭ на численное решение задачи рассмотрены элементы 1-го и 2-го порядка. Исследование выполнено в рамках классической задачи Герца. Помимо этого, для задачи о контакте сферического штампа со стальным полупространством через защитное полимерное покрытие толщиной от 4 до 12 мм проведено исследование полученных решений при моделировании разных характеров сопряжения контактных поверхностей. Выявлено, что наименьшее влияние порядок элементов оказывает на решение задачи при идеальном контакте, наибольшее при фрикционном контакте.
Полный текст
Для решения задач прикладной механики и компьютерного инжиниринга применяются численные методы: метод конечных разностей [1], метод конечных элементов (МКЭ) [2], метод граничных элементов [3] и их различные модификации [4; 5]. Преимущества численных сеточных методов [6; 7]: постановка задачи, понятная инженерам-исследователям; возможность моделирования геометрически сложных объектов; быстрота и удобность получения результатов; экономичность и т.д. Метод конечных элементов [8–11] развивается с 50-х гг. прошлого века и получил широкое распространение в прикладных инженерных пакетах: ABAQUS, ANSYS, SFX и т.д. При этом вычислительные алгоритмы, реализованные в программах, не стоят на месте и постоянно совершенствуются с точки зрения качества решения и затрат ресурсов вычислительной техники. Прикладные пакеты инженерного анализа позволяют решить большинство линейных и нелинейных, стационарных и нестационарных пространственных задач механики деформируемого тела, механики жидкости и газа, газогидродинамики, теплофизики, электродинамики, акустики [12]. Математические основы МКЭ, заложенные в прикладных пакетах, включают разную степень аппроксимации элементов. Симплекс-элементы с линейной аппроксимацией широко используется при реализации задач в рамках МКЭ [4; 13; 14]. При этом можно отметить недостаток такой постановки для криволинейных границ объектов исследования. Использование элементов более высокого порядка может улучшить получаемые результаты, т.е. максимально близко описать поведение конструкции к реальной ее работе. Однако при использовании таких элементов в разы увеличивается количество узловых неизвестных, что, в свою очередь, может привести к загрузке вычислительных систем, особенно при реализации нелинейных задач механики. Поэтому очень важно правильно подобрать тип конечных элементов в зависимости от геометрии модели, получаемых результатов в ходе решения численной задачи и т.д.Анализ деформирования полимерных материалов, применяемых как защитные и антифрикционные покрытия и прослойки, относится к нелинейным задачам механики деформируемого твердого тела [15–16]. Не линейны не только модели поведения таких материалов, а также характер их сопряжения с соседними объектами. Производители различных конструкций и их элементов имеют большой спрос на производство, исследование и развитие как полимерных материалов, так и композиционных материалов на их основе [17–20]. Такие материалы применяются в разнообразных промышленных областях [21–23]. Одним из популярных полимерных материалов является политетрафторэтилент, или модифицированный фторопласт, также существует большое разнообразие композиционных материалов на его основе [24–26]. Данные материалы часто используются в качестве защитных покрытий [27–29], функциональных мембран [30], полимерных стентов [31]. При изготовлении полимерных материалов и/или последующей обработке [32] их поверхности имеют различную степень шероховатости. Ее уровень оказывает влияние на работу конструкции, долговечность, износостойкость [33–37] и т.д. Материалы работают в рамках трибологии в качестве защитных покрытий различной толщины [38], обладают разной шероховатостью и взаимодействуют с металлическими и неметаллическими поверхностями сопряжения с разным характером обработки, что влияет на контактное взаимодействие объектов. Чаще всего при моделировании контактных узлов моделируют элементы конструкции с идеальным контактом. Однако в условиях реальной работы конструкции такой вид контакта слабо возможен, а для приближения численного моделирования конструкции к ее реальной работе и более точного описания напряженно-деформированного состояния (НДС) и прогнозирования ее деформационного поведения необходимо использовать другие варианты характера сопряжения.Таким образом, актуальны исследования, включающие разные факторы, влияющие на численное решение задачи, в том числе и для канонической геометрии объектов. Реализация задач с анализом влияния аппроксимации МКЭ должна верифицироваться на моделях с известными решениями, с дальнейшим переходом к моделям объектов и систем. В работе рассмотрена нелинейная задача механики о контактном деформировании защитного полимерного покрытия разной толщины с тремя вариантами сопряжения «полимер – полупространство» для двух вариантов аппроксимации конечных элементов (КЭ). Верификация задачи выполнена на классической задаче контакта Герца.Об авторах
А. А. Каменских
Пермский национальный исследовательский политехнический университет
А. С. Крысина
Пермский национальный исследовательский политехнический университет
А. П. Панькова
Пермский национальный исследовательский политехнический университет
Список литературы
- Сеченов П.А., Рыбенко И.А. Решение задачи одномерной теплопроводности на графических процессорах с использованием технологии CUDA // Прикладная математика и вопросы управления. - 2021. - № 4. - С. 23-41. doi: 10.15593/2499-9873/2021.4.02.
- Zienkiewiez, O. C. The finite element method in engineering science. - London, New York: McGraw-Hill, 1971. - 521 p.
- Brebbia C.A., Walker S. Boundary Element Techniques in Engineering. - Elsevier Science, 2016. - 220 p.
- Матвеев А.Д. Построение высокоточных многосеточных конечных элементов малой размерности с применением локальных аппроксимаций и образующих конечных элементов // Сибирский аэрокосмический журнал. - 2022. - Т. 23, № 3. - С. 372-390.
- Kuznetsova Y.S., Vorobyev N.A., Trufanov N.A. Application of the geometric immersion method based on the Castigliano variational principle for the axisymmetric problems of elasticity theory // IOP Conference Series: Materials Science and Engineering. - 2017. - Vol. 177. - Art. 012125. - doi: 10.1088/1757-899X/177/1/012125.
- Станкевич И.В., Яковлев М.Е., Си Ту Хтет Разработка алгоритма контактного взаимодействия на основе альтернирующего метода Шварца // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия: Естественные науки. - 2011. - №S1. - С. 134-141.
- Ящук Ю.А., Прокопышин И.И. Решение задачи контактного взаимодействия с использованием h - адаптивного метода конечных элементов // Сибирские электронные математические известия. - 2014. - Т. 11. - С. 220-228.
- Кривицкий П.В., Матвеенко Н.В. Численная модель предварительно напряженных железобетонных балок с полого отогнутой арматурой при различных пролетах среза // Вестник Брестского государственного технического университета. Строительство и архитектура. - 2018. - № 1 (109). - С. 92-97.
- Бабин А.П., Зернин М.В. Конечноэлементное моделирование контактного взаимодействия с использованием положений механики контактной псевдосреды // Известия российской академии наук. Механика твердого тела. - 2009. - № 4. - С. 84-107.
- Borazjani I. Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves, // Computer Methods in Applied Mechanics and Engineering - 2013. - Vol. 257. - P. 103-116. doi: 10.1016/j.cma.2013.01.010.
- Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies /j.A. Deibel, M. Escarra, N. Berndsen [et al.] // Proceedings of the IEEE - 2007. - Vol. 95, № 8. - P. 1624-1640. doi: 10.1109/JPROC.2007.898817.
- Probabilistic finite element analysis using ANSYS / S. Reh, J.-D. Beley, S. Mukherjee, E.H. Khor // Structural Safety - Vol. 28(1-2). - P. 17-43. doi: 10.1016/J.STRUSAFE.2005.03.010.
- Трусов П.В., Янц А.Ю., Теплякова Л.А. Прямая физическая упруговязкопластическая модель: приложение к исследованию деформирования монокристаллов // Физическая мезомеханика. - 2018. - Т. 21, № 2. - С. 33-44.
- Столбова О.С., Тихомирова К.А. Два метода расчета напряженно-деформированного состояния конструктивных элементов из сплавов с памятью формы с учетом различия свойств на растяжение и сжатие // Вестник Пермского национального исследовательского политехнического университета. Механика. - 2020. - № 1. - С. 109-125.
- Process-Structure-Properties in Polymer Additive Manufacturing via Material Extrusion: A Review / G.D. Goh, Y.L. Yap, H.K.J. Tan [et al.] // Critical Reviews in Solid State and Materials Sciences - 2020 - Vol. 45. - Art. 2. - P. 113-133. doi: 10.1080/10408436.2018.1549977.
- Mechanical properties of PTFE coated fabrics / Y. Zhang, Q. Zhang, C. Zhou, Y. Zhou // Journal of Reinforced Plastics and Composites. - 2010 - Vol. 29, № 24. - P. 3624-3630. doi: 10.1177/0731684410378542.
- Ube T., Ikeda T. Photomobile Polymer Materials with Complex 3D Deformation, Continuous Motions, Self-Regulation, and Enhanced Processability // Advanced Optical Materials. - 2019 - Vol. 7(16) - Art. 1900380. doi: 10.1002/adom.201900380.
- Primc G. Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments // Polymers. - 2020. - Vol. 12(10). - Art. 2295. DOI: 10.3390/ POLYM12102295.
- Ojogbo E., Ogunsona E.O., Mekonnen T.H. Chemical and physical modifications of starch for renewable polymeric materials // Materials Today Sustainability - 2020 - Vol. 7-8. - Art. 100028. doi: 10.1016/J.MTSUST.2019.100028.
- Impact of dataset uncertainties on machine learning model predictions: the example of polymer glass transition temperatures / A. Jha, A. Chandrasekaran, C. Kim, R. Ramprasad // Modeling and Simulation in Materials Science and Engineering. - 2019. - Vol. 27, № 2. - Art. 024002. doi: 10.1088/1361-651X/aaf8ca.
- Tan L.J., Zhu W., Zhou K. Recent Progress on Polymer Materials for Additive Manufacturing // Advanced Functional Materials - 2020 - Vol. 30(43). - Art. 2003062. DOI: 10.1002/ adfm.202003062.
- Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UV-Blocking Performance / X. Zhang, W. Liu, D. Yang, X. Qiu // Advanced Functional Materials - 2018 - Vol. 29(4). - Art. 1806912. DOI: 10.1002/ adfm.201806912.
- Zhou L.-Y., Fu J., He Y. A Review of 3D Printing Technologies for Soft Polymer Materials // Advanced Functional Materials - 2020 - Vol. 30(28). - Art. 2000187. DOI: 10.1002/ adfm.202000187.
- Ultralow Wear Self-Mated PTFE Composites / K.E. Van Meter, C.P. Junk, K.L. Campbell [et al.] // Macromolecules. - 2022. - № 55 (10). - P. 3924-3935. doi: 10.1021/acs.macromol. 1c02581.
- Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate) / S. Peng, L. Zhang, G. Xie [et al.] // Composites Part B: Engineering. - 2019. - Vol. 172. - P. 316-322. doi: 10.1016/j.compositesb.2019.04.047.
- Mylsamy G., Krishnasamy P. A Review on Electrical Properties of Fiber-Reinforced Polymer Material: Fabrication, Measurement, and Performances // Transactions of the Indian Institute of Metals. - 2023. - Vol. 73. - P. 1691-1708. doi: 10.1007/S12666-023-02888-3.
- Corrosion and tribological performance of PTFE-coated electroless nickel boron coatings / Y. Wan, Y. Yu, L. Cao [et al.] // Surface and Coatings Technology. - 2016. - Vol. 307. - P. 316-323. doi: 10.1016/J.SURFCOAT.2016.09.001.
- Sajid M., Ilyas M. PTFE-coated non-stick cookware and toxicity concerns: a perspective // Environmental Science and Pollution Research - 2017. - № 24. - P. 23436-23440. doi: 10.1007/S11356-017-0095-Y.
- Flame retardant polymer materials: An update and the future for 3D printing developments / H. Vahabi, F. Laoutid, M. Mehrpouya [et al.] // Materials Science and Engineering: R: Reports. - 2021. - Vol. 144. - Art. 100604. doi: 10.1016/J.MSER.2020.100604.
- PTFE porous membrane technology: A comprehensive review / Q. Guo, Y. Huang, M. Xu [et al.] // Journal of Membrane Science. - 2022. - Vol. 664. - Art. 121115. doi: 10.1016/J.MEMSCI.2022.121115.
- Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents / K. Škrlová, K. Malachová, A. Muñoz-Bonilla [et al.] // Nanomaterials. - 2019. - Vol. 9(11). - Art. 1548. doi: 10.3390/nano9111548.
- Макаров В.Ф., Муратов К.Р. Анализ оборудования для финишной абразивной обработки плоских поверхностей // Машиностроение, материаловедение. - 2017. - Т. 19, № 1. - С. 170-187. doi: 10.15593/2224-9877/2017.1.11.
- Аникеев А.Н., Абляз Т.Р. Влияние напряжения и скорости смотки электрода-проволоки на формирование шероховатости обработанной поверхности при проволочно-вырезной электроэрозионной обработке // Машиностроение, материаловедение. - 2016. - Т. 18, № 1. - С. 175-188. doi: 10.15593/2224-9877/2016.1.12.
- Study on Roughness Parameters Screening and Characterizing Surface Contact Performance Based on Sensitivity Analysis / Y. Duo, T. Jinyuan, Z. Wei, W. Yuqin // Journal of Tribology. - 2022. - № 144(4). - Art. 041502. doi: 10.1115/1.4051733.
- Investigation on size effect of surface roughness and establishment of prediction model in micro-forming process / G. Wang, J. Han, Y. Lin, W. Zheng // Materials Today Communications. - 2021. - Vol. 27. - Art. 102279. doi: 10.1016/j.mtcomm.2021.102279.
- Никитин О.Ф. Шероховатость поверхности и герметичность контактных уплотнительных устройств // Машиностроение и компьютерные технологии. - 2013. - № 5. - С. 101-106.
- Козицына М.В., Труфанова Н.М., Рябкова Н.А. Численно-экспериментальное определение реологических характеристик полимеров // Машиностроение, материаловедение. - 2017. - Т. 19, № 1. - С. 155-167. doi: 10.15593/2224-9877/2017.1.10.
- The Effects of PTFE Thickness on the Tribological Behavior of Thick PDA/PTFE Coatings / S.K. Ghosh, C. Miller, D. Choudhury [et al.] // Tribology Transactions. - 2020 - Vol. 63, № 3. - P. 575-584. doi: 10.1080/10402004.2020.1728001.
- Adamov A.A., Kamenskikh A.A., Nosov Yu.O.Comparative Analysis of the Polymeric Materials Deformation Behavior under Squeezed and Free Compression // IOP Conference Series: Materials Science and Engineering - 2020. - Vol. 731, № 1. - Art. 012007. doi: 10.1088/1757-899X/731/1/012007.
- Полимерные защитные покрытия от биокоррозии / В.Ф. Строганов, Е.В. Сагадеев, В.А. Бойчук, О.В. Стоянов, А.М. Мухаметова // Вестник Казанского технологического университета. - 2014. - Т. 17, № 18. - С. 149-154.
- Kamenskih A.A., Trufanov N.A. Regularities interaction of elements contact spherical unit with the antifrictional polymeric interlayer // Journal of Friction and Wear. - 2015. - Vol. 36, № 2. - P. 170-176.
- Каменских А.А., Пащенко М.М. Исследование влияния характера контактного взаимодействия штампа с многослойным защитно-упрочняющим покрытием на деформационные характеристики системы штамп-полупространство // Научно-технический вестник Поволжья. - 2021. - № 8. - С. 59-62.
Статистика
Просмотры
Аннотация - 131
PDF (Russian) - 152
Ссылки
- Ссылки не определены.