Laboratory Studies of the Process of Injection of CO2 Mixed with Methane Into Productive Terrigenous Oil-Saturated Rocks of One of the Fields in the Perm Krai

Abstract


The technological and economic efficiency of carbon dioxide (CO2) injection depends on many factors, such as the CO2 source, the method of gas delivery to the field, the method of injection into the reservoir, the characteristics of the reservoir and oil, etc. Therefore, before implementing the method at oil production facilities, it is necessary to conduct special laboratory tests for the conditions of oil and gas facilities, determine the technological feasibility of CO2 injection and economic feasibility. The paper presents the results of experimental studies carried out in the laboratory of modeling filtration processes and enhanced oil recovery of the Department of Oil and Gas Technologies. Using core material on the example of one of the fields in the Perm Krai, filtration tests were performed to displace oil with gas (a mixture of CO2 and methane) and joint stationary filtration of oil and gas through the porous medium of the reservoir rock. As part of the study, core and fluids were prepared, filtration tests were carried out using modern scientific equipment. Modeling of CO2 injection into oil-saturated rocks was performed on three differently permeable composite core samples. As a result, it was found that when using gas, high values of the oil displacement coefficient are achieved, due to the almost complete mutual solubility of gas and oil. Potentially, this can significantly increase the share of recoverable reserves at new objects that are just entering industrial development when CO2 injection is organized. The ratio of gas and oil in the flow at which complete miscibility occurs was determined. Cases of imbalance of the "oil - gas" system were recorded, in which heavy components of oil form resinous sediments that clog the pore space. The content of oil and gas in the flow at which colmatants were formed was determined.

Full Text

12

About the authors

E. A Gladkikh

Perm National Research Polytechnic University

Iu. S Shcherbakova

Perm National Research Polytechnic University

Hongwen Jing

China University of Mining and Technology

Liyuan Yu

China University of Mining and Technology

References

  1. Mitrofanova, I.V. Decarbonization of the economy – the general trend of development of Russia and its regions in the 21st century / I.V. Mitrofanova // Regional economy. South Of Russia. – 2021. – Vol. 9, no. 4. – P. 4–13. doi: 10.15688/re.volsu.2021.4.1. – EDN MFGOEW.
  2. Павлова, П.Л. Анализ зарубежной техники и технологии закачки диоксида углерода в нефтегазоностный пласт. Обзорная статья / П.Л. Павлова, Е.И. Михиенкова // Нефтегазовое дело. – 2021, – Т. 5. – C. 63–65.
  3. Blam, I. Yu. Different Modes of Provisioning Decarbonization of the Oil and Gas Industry in Modern Societies / I. Yu. Blam, S. Yu. Kovalev // Journal of Siberian Federal University. Humanities and Social Sciences. – 2024. – Vol. 17, no. 3. – P. 457–464. EDN CWDBNW.
  4. Попадько, Н.В. Роль наилучших доступных технологий в декарбонизации российской экономики (на примере нефтегазодобывающего комплекса) / Н.В. Попадько, Ю.В. Ухина // Экономика строительства. – 2024. – № 12. – С. 227–230. – EDN OMBONY.
  5. Yoosook, H. CO2 Utilization for Enhance Oil Recovery with Huff-N-Puff Process in Depleting Heterogeneous Reservoir / H. Yoosook, K. Maneeintr, T. Boonpramote // Energy Procedia. – 2017. – Vol. 141. – Р. 184–188. doi: 10.1016/j.egypro.2017.11.035
  6. Влияние секвестрации углерода в горных породах на изменение фильтрационных и механических характеристик пласта при доизвлечении запасов нефти / А.А. Щербаков, М.С. Турбаков, Хунвэн Цзин, Лиюань Юй, С.Г. Ашихмин, Ю.С. Щербакова // Недропользование. – 2025. – Т.25, № 1. – С. 52–58. doi: 10.15593/2712-8008/2025.1.7
  7. A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs / L.C. Burrows, F. Haeri, P. Cvetic, S. Sanguinito, F. Shi, D. Tapriyal, A. Goodman, R.M. Enick // Energy and Fuels. – 2020. – Vol. 34 (5). – Р. 5331–5380. doi: 10.1021/ACS.ENERGYFUELS.9B03658
  8. Braithwaite, C. A Review of IOR/EOR Opportunities for the Brent Field: Depressurization, the Way Forward / C. Braithwaite // Materials of SPE/DOE Improved Oil Recovery Symposium. – Tulsa, Oklahoma, USA. – 1994. – SPE-27766-MS. doi: 10.2118/27766-MS
  9. Design and Implementation of the First CO2-EOR Pilot in Abu Dhabi, UAE. Materials of SPE EOR Conference at Oil and Gas West Asia / S. Al Hajeri, S. Negahban, G. Al-Yafei, A. Al Basry // Muscat, Oman. – 2010. – SPE-129609-MS. doi: 10.2118/129609-ms
  10. Chen, B. CO2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths / B. Chen, A.C. Reynolds // Computers and Chemical Engineering. – 2018. – Vol. 113. – Р. 44–56. doi: 10.1016/j.compchemeng.2018.03.006
  11. Jia, B. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs / B. Jia, J. Tsau, R. Barati // Fuel. – 2019. – Vol. 236. – P. 404–427. doi: 10.1016/j.fuel.2018.08.103.
  12. Advancing CO2 enhanced oil recovery and storage in unconventional oil play–Experimental studies on Bakken shales / L. Jin, S. Hawthorne, J. Sorensen, L. Pekot, B. Kurz, S. Smith, L. Heebink, V. Herdegen, N. Bosshart, J. Torres, C. Dalkhaa, K. Peterson, C. Gorecki, E. Steadman, J. Harju // Applied Energy. – 2017. – Vol. 208. – Р. 171–183. doi: 10.1016/j.apenergy.2017.10.054
  13. Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs / H.R. Lashgari, A. Sun, T. Zhang, G.A. Pope, L.W. Lake // Fuel. – 2019. – Vol. 241. – Р. 1223–1235. doi: 10.1016/j.fuel.2018.11.076
  14. Numerical estimations of storage efficiency for the prospective CO2 storage resource of shales / E.M. Myshakin, H. Singh, S. Sanguinito, G. Bromhal, A.L. Goodman // International Journal of Greenhouse Gas Control. – 2018. – Vol. 76. – Р. 24–31. doi: 10.1016/j.ijggc.2018.06.010
  15. Анурьев, Д.А. История применения технологии закачки углекислого газа в нефтеносные пласты с целью повышения коэффициента извлечения нефти / Д.А. Анурьев, И.И. Жданов // Сборник тезисов XI Международной научно-практической конференции, Ижевск, 16 апреля 2021 года. – Ижевск: Издательский дом «Удмуртский университет», 2021. – С. 154–158. EDN VWTSTG.
  16. Опытно-промышленные работы по использованию углекислого газа для интенсификации добычи высоковязкой нефти / В.И. Дарищев, С.А. Харланов, Ю.И. Бабинец [и др.] // Нефть. Газ. Новации. – 2022. – № 2 (255). – С. 29–34. EDN FUPKME.
  17. Storing CO2 underneath the Siberian Permafrost: A win-win solution for long-term trapping of CO2 and heavy oil upgrading / Y.M. Le Nindre, D. Allier, A. Duchkov, L.K. Altunina, S. Shvartsev, M. Zhelezniak, J. Klerkx // Energy Procedia. – 2011. – Vol. 4. – Р. 5414–5421. doi: 10.1016/J.EGYPRO.2011.02.526
  18. Афонин, Д.Г. Факторный анализ расчетной эффективности обработок добывающих скважин углекислым газом по технологии Huff and Puff / Д.Г. Афонин, А.А. Ручкин, Р.М. Галикеев // Нефтяное хозяйство. – 2024. – № 8. – С. 84–88. doi: 10.24887/0028-2448-2024-8-84-88. – EDN QXVAHI.
  19. Алиев, М.М. Современные методы и способы закачки СО2 в нефтегазовые пласты / М.М. Алиев, А.Р. Ахмаров // Энергия молодежи для нефтегазовой индустрии: сборник материалов VII Международной научно-практической конференции молодых ученых, Альметьевск, 20 декабря 2023 года. – Альметьевск: Альметьевский государственный нефтяной институт, 2023. – С. 52–57. EDN PZWKCL.
  20. Хакимов, А.Г. Использование технологии закачки пены СО2 для увеличения нефтеотдачи пластов / А.Г. Хакимов, А.М. Царев, Н.А. Еремин // Нефтяное хозяйство. – 2025. – № 1. – С. 52–55. doi: 10.24887/0028-2448-2025-1-52-55. EDN UZEFKG.
  21. Применение CO2 в условиях высоковязкой и сверхвязкой нефти / А.Ю. Спектор, А.М. Семкин, К.Ю. Мироненко, В.А. Дедечко // Нефть. Газ. Новации. – 2023. – № 1 (266). – С. 57–60. EDN PBAWED.
  22. Щербаков, А.А. Оценка эффективности мероприятий по интенсификации добычи нефти (на примере месторождений Соликамской депрессии) / А.А. Щербаков, Г.П. Хижняк, В.И. Галкин // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2019. – № 2. – С. 70–73. doi: 10.30713/2413-5011-2019-2-70-73. EDN POYKAL.
  23. Ahmadi, M.A. Numerical modeling of CO2 injection scenarios in petroleum reservoirs: Application to CO2 sequestration and EOR / M.A. Ahmadi, B. Pouladi, T. Barghi // Journal of Natural Gas Science and Engineering. – 2016. – Vol. 30. – Р. 38–49. doi: 10.1016/j.jngse.2016.01.038
  24. Cyclic confining pressure and rock permeability: Mechanical compaction or fines migration / E.V. Kozhevnikov, M.S. Turbakov, E.P. Riabokon, E.A. Gladkikh, V.V. Poplygin // Heliyon. – 2023. – Vol. 9, no. 11. – P. e21600. doi: 10.1016/j.heliyon.2023.e21600
  25. Apparent Permeability Evolution Due to Colloid Migration Under Cyclic Confining Pressure: On the Example of Porous Limestone / E.V. Kozhevnikov, M.S. Turbakov, E.P. Riabokon, E.A. Gladkikh // Transport in Porous Media. – 2024. – Vol. 151, no. 2. – P. 263–286. doi: 10.1007/s11242-023-01979-5
  26. Influence of Frequency of Wave Action on Oil Production / V.V. Poplygin, C. Qi, M.A. Guzev, E.P. Riabokon, M.S. Turbakov, E.V. Kozhevnikov // International Journal of Engineering. – 2022. – Vol. 35, no. 11. – P. 2072–2076. doi: 10.5829/IJE.2022.35.11B.02
  27. Assessment of the Elastic-Wave Well Treatment in Oil-Bearing Clastic and Carbonate Reservoirs / V. Poplygin, C. Qi, M. Guzev, E. Kozhevnikov, A. Kunitskikh, E. Riabokon, M. Turbakov // Fluid Dynamics & Materials Processing. – 2023. – Vol. 19, no. 6. – P. 1495–1505. doi: 10.32604/fdmp.2023.022335
  28. Effects of ultrasonic oscillations on permeability of rocks during the paraffinic oil flow / E. Riabokon, E. Gladkikh, M. Turbakov, E. Kozhevnikov, M. Guzev, N. Popov, P. Kamenev // Geotechnique Letters. – 2023. – Vol. 13, no. 3. – P. 151–157. doi: 10.1680/jgele.22.00137
  29. The Rehbinder Effect in Testing Saturated Carbonate Geomaterials / E. Riabokon, M. Turbakov, E. Kozhevnikov, V. Poplygin, H. Jing // Materials. – 2023. – Vol. 16, no. 8. – P. 3024. doi: 10.3390/ma16083024
  30. Colloidal-induced permeability degradation assessment of porous media / E.V. Kozhevnikov, M.S. Turbakov, E.A. Gladkikh, E.P. Riabokon, V.V. Poplygin, M.A. Guzev, C. Qi, H. Jing // Géotechnique Letters. – 2022. – Vol. 12, no. 3. – P. 217–224. doi: 10.1680/jgele.22.00017
  31. Colloid Migration As A Reason For Porous Sandstone Permeability Degradation During Coreflooding / E.V. Kozhevnikov, M.S. Turbakov, E.A. Gladkikh, E.P. Riabokon, V.V. Poplygin, M.A. Guzev, C. Qi, A.A. Kunitskikh // Energies. – 2022. – Vol. 15, no. 8. – P. 2845. doi: 10.3390/en15082845
  32. Beeson, D. Laboratory Investigation of the Water-Driven Carbon Dioxide Process for Oil Recovery / D. Beeson, G. Ortloff // Journal of Petroleum Technology. – 1959. – Vol. 11, iss. 4. – P. 63–66. doi: 10.2118/1100-g.l
  33. Bon, J. An Investigation of Minimum Miscibility Pressure for CO2-Rich Injection Gases with Pentanes-Plus Fraction / J. Bon, H.K. Sarma, A.M. Theophilos // Materials of SPE International Improved Oil Recovery Conference in Asia Pacific. – Kuala Lumpur, Malaysia, 2005. – SPE-97536-MS. doi: 10.2118/97536-ms.
  34. Investigation of CO2/N2 Injection in Tight Oil Reservoirs with Confinement Effect / S. Wu, Z. Li, Z. Wang, H.K. Sarma, C. Zhang, M. Wu // Energy Science and Engineering. – 2020. – Vol. 8, iss. 4. – P. 1194–1208. doi: 10.1002/ese3.578.
  35. Физическое моделирование процессов молекулярной диффузии при закачке диоксида углерода в продуктивные пласты / С.А. Хан, В.М. Троицкий, С.Г. Рассохин [и др.] // Газовая промышленность. – 2013. – № S (696). – С. 68–72. EDN RIISBH.
  36. Исследование возможности частичного замещения буферного газа на диоксид углерода на подземных хранилищах газа / А.С. Гарайшин, И.Г. Бебешко, А.В. Григорьев [и др.] // Научно-технический сборник Вести газовой науки. – 2015. – № 3 (23). – С. 79–83. EDN WJGQDN.
  37. Laboratory Investigation of Enhanced Light-Oil Recovery by CO2/Flue Gas Huff-n-Puff Process / Y. Zhang, S. Sayegh, S. Huang, M. Dong // Journal of Canadian Petroleum Technology. – 2006. – Vol. 45, iss. 2. – PETSOC-06-02-01. doi: 10.2118/06-02-01.
  38. Mirzaei-Paiaman, A. Techno-economic-environmental study of CO2 and aqueous formate solution injection for geologic carbon storage and enhanced oil recovery / A. Mirzaei-Paiaman, O.A. Carrasco-Jaim, R. Okuno // International Journal of Greenhouse Gas Control. – 2024. – Vol. 138. – 104257. doi: 10.1016/J.IJGGC.2024.104257
  39. Techno-economic evaluation of CO2-EOR and carbon storage in a shallow incised fluvial reservoir using captured-CO2 from an ethanol plant / P. Longe, S. Molomjav, J.S. Tsau, S. Musgrove, J. Villalobos, J. D’Erasmo, M.M. Alhajeri, R. Barati // Geoenergy Science and Engineering. – 2025. – Vol. 246. – 213559. doi: 10.1016/J.GEOEN.2024.213559
  40. Determination of minimum miscibility and near-miscibility pressures for CO2-oil mixtures in shale reservoirs / Y. Song, Z. Song, Y. Mo, Q. Zhou, Y. Jing, F. Chen, S. Tian, Z. Chen // Fuel. – 2025. – Vol. 388. doi: 10.1016/j.fuel.2025.134531
  41. Pore-scale insights into CO2-EOR performance in depleted oil reservoirs by miscibility – compared with WAG injection / Y. Wang, Z. Fan, C. Yang, H. Weng, K. He, D. Wang // Geoenergy Science and Engineering. – 2025. – Vol. 250. – 213839. doi: 10.1016/J.GEOEN.2025.213839
  42. Enhanced oil recovery through CO2 injection: The role of pentane in improving miscibility of CO2 and oil / M. Zhao, Y. Xie, X. Meng, L. Li, C. Dai, Z. Zhang, Z. Ma, Y. Wang, Z. Xu, X. Song // Fuel. – 2025. – Vol. 392. – 134935. doi: 10.1016/J.FUEL.2025.134935
  43. Волошин, А.И. Технологические осложнения (повреждение пласта) при закачке СО2 для повышения нефтеотдачи. Часть 2. Взаимодействие CO2 с пластовой нефтью: изменение смачиваемости, осаждение и отложение асфальтенов в пласте / А.И. Волошин, М.Г. Волков, В.А. Докичев // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. – 2024. – № 4 (150). – С. 74–95. doi: 10.17122/ntj-oil-2024-4-74-95. EDN LBMNQZ.
  44. Formation Damage Through Asphaltene Precipitation Resulting from CO2 Gas Injection in Iranian Carbonate Reservoirs / A. Kalantari-Dahaghi, V. Gholami, J. Moghadasi, R. Abdi // SPE Production & Operations. – 2008. – Vol. 23, no. 2. – P. 210–214. doi: 10.2118/99631-PA
  45. Formation Damage Due to Asphaltene Precipitation During CO2 Flooding Processes with NMR Technique / K. Qian, S. Yang, H.-E. Dou, J. Pang, Y. Huang // Oil & Gas Science and Technology – Revue d'IFP Energies Nouvelles. – 2019. – Vol. 74. – 11 p. doi: 10.2516/ogst/2018084

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Refbacks

  • There are currently no refbacks.

Copyright (c) 2025 Gladkikh E.A., Shcherbakova I.S., Jing H., Yu L.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies