РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ВЛИЯНИЯ ТРЕНИЯ НА МЕХАНИЧЕСКИЕ ПОКАЗАТЕЛИ СОЛЯНЫХ ПОРОД
- Авторы: Паньков И.Л.1, Морозов И.А.1
- Учреждения:
- Пермский национальный исследовательский политехнический университет
- Выпуск: Том 16, № 1 (2017)
- Страницы: 64-72
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/geo/article/view/1223
- DOI: https://doi.org/10.15593/2224-9923/2017.1.7
- Цитировать
Аннотация
Целью работы является изучение влияния трения между образцами и плитами пресса на механические показатели соляных пород. Основным источником информации для определения значений механических показателей соляных пород являются лабораторные испытания породных образцов на сжатие. Известно, что определяемые по результатам сжатия образцов значения механических показателей существенным образом зависят от величины силы трения между торцами и плитами пресса. При этом эмпирические коэффициенты формы, используемые при расчете величин механических характеристик, соответствующих одноосному сжатию, в явном виде не учитывают конкретные торцевые условия. Это приводит к известной неточности в постановке эксперимента и трактовке его результатов. Таким образом, актуальными являются исследования, связанные с более детальным изучением влияния трения между образцами и плитами пресса на механические показатели соляных пород. В ходе экспериментальных исследований было испытано 75 образцов тонко-среднеслоистой каменной соли Верхнекамского месторождения калийных солей. В работе приведены результаты экспериментальных исследований по определению коэффициентов трения соляных пород по схеме «сдвиг со сжатием» по различным поверхностям. Выполнены исследования сжатия образцов различной высоты при известных контактных условиях. Необходимая величина трения моделировалась использованием специально изготовленных прокладок, размещаемых между торцами испытываемых на сжатие образцов и плитами пресса. По результатам сжатия каждого образца строилась полная диаграмма деформирования и определялся комплекс механических показателей. Получены зависимости, отражающие влияние сил трения между торцами образцов и плитами пресса при сжатии на значения предела прочности, разрушающей деформации, удельной энергоемкости деформирования каменной соли. Результаты исследования предназначены для совершенствования методики испытания горных пород на сжатие.
Ключевые слова
Полный текст
Введение Геомеханическое обеспечение безопасных условий ведения горных работ на всех стадиях горного производства предполагает наличие объективной информации о свойствах пород, базирующейся на современных экспериментальных и теоретических методах их определения. Данное требование особенно актуально для Верхнекамского месторождения калийных солей (ВКМКС), особенность разработки которого связана с необходимостью сохранения сплошности водозащитной толщи, нарушение которой может привести к аварийному затоплению калийного рудника [1]. Практика разработки соляных месторождений насчитывает свыше 80 затопленных и неподлежащих восстановлению рудников. На территории России и стран Ближнего зарубежья можно также выделить ряд крупных аварий: затопление рудника № 1 Илецкого месторождения каменной соли, а также затопление двух рудников ВКМКС - БКПРУ-1 и БКПРУ-3. При эксплуатации рудника № 1 Илецкого месторождения были отмечены многократные прорывы вод и рассолов в подземные горные выработки через карстовые трещины и пустоты. Так, 17 февраля 1979 г. при очередном прорыве надсолевых вод рудник № 1 был затоплен. В июле 1986 г. был затоплен рудник БКПРУ-3. Процесс выщелачивания солей над блоком № 8 привел к обрушению дневной поверхности. При этом образовался провал длиной 60-80 м и шириной 40-50 м. В октябре 2006 г. произошел прорыв рассола в горные выработки рудника БКПРУ-1, что привело к его аварийному затоплению. Ретроспективный анализ аварийности на горных предприятиях, разрабатывающих водорастворимые руды, позволяет сделать вывод о том, что, как правило, причиной аварии является несоответствие параметров системы разработки условиям конкретных отрабатываемых участков. Таким образом, необходимым условием безопасности ведения горных работ является соответствие параметров системы разработки горно-геологическим условиям конкретных участков с учетом физико-механических свойств отрабатываемых пластов [2]. При расчете параметров системы разработки одним из основных показателей устойчивости горных выработок является предел прочности на одноосное сжатие. Но, несмотря на то что ГОСТ 21153.2-84 [3] оговаривает условия лабораторных исследований прочности образцов, при массовых испытаниях соляных пород не всегда имеется возможность провести эксперимент в соответствии с установленными требованиями. Согласно исследованиям М. Кулбауфа [4], характер деформации и значение прочности при сжатии существенно изменяются при снижении сцепления на контактах образца с плитами пресса, в частности при использовании прокладок, смазанных графитом. Так, для кубических образцов каменной соли с длиной грани 5 см значение предела прочности снижается ровно в 2 раза. При испытании кубических образцов каменной соли с размером грани 10 см Ф.В. Уленбекером [4] было установлено возрастание прочности при сжатии до 40,3 МПа по сравнению с 31 МПа для образцов без прокладок. В работе [4] также упоминается об исследованиях Р. Квапилы, в которых установлено, что смазка на плоскостях давления снижает значение предела прочности на 30-50 %. Отмечается, что применение различных видов смазки на контактах образца с плитами пресса при испытаниях на сжатие приводит к значительному снижению предела прочности, причем интенсивность уменьшения последнего зависит от соотношения вертикального и поперечного размеров образцов. Для высоких образцов, при отношении высоты к длине стороны или диаметру образца более 3, контактные условия практически не оказывают влияния на значение прочности [4]. В работе [5] для оценки влияния контактных условий на прочностные и деформационные свойства образцов соляных пород проведены испытания образцов пестрого сильвинита в режиме «сухого трения» и при использовании в качестве прокладок тонких листов фторопласта толщиной 0,1 мм, которые устанавливались между торцами образца и плитами пресса. Применение фторопластовых прокладок способствовало уменьшению предела прочности, разрушающей деформации, модуля деформации, модуля спада. В [5] отмечается, что интенсивность влияния прокладок зависит от отношения высоты образца к его диаметру. М.Ф. Кунтыш [4] отмечает закономерное снижение прочности при шлифовке и полировке поверхностей образцов. И.В. Баклашов [6] указывает, что отсутствие сцепления на торцах уменьшает прочность на одноосное сжатие на 30-50 %. В работах [7-9] авторы отмечают, что с уменьшением коэффициента трения между торцами испытываемых на сжатие соляных образцов и плитами пресса наблюдается снижение предела прочности, разрушающей деформации, удельной энергоемкости деформирования и возрастание модуля спада. Так, при отношении высоты к диаметру образца 0,75 и увеличении коэффициента трения покоя с 0,1 до 0,5 происходит рост значения предела прочности с 22 до 36 МПа. При этом разрушающая деформация возрастает с 3 до 7 %, удельная энергоемкость деформирования - с 0,5 до 4,5 МДж/м3. Увеличение отношения высоты к диаметру с 0,75 до 1,50 ведет к снижению влияния коэффициента трения на значения предела прочности, разрушающей деформации и удельной энергоемкости деформирования. Для образцов с отношением высоты к диаметру 1,50 увеличение коэффициента трения с 0,1 до 0,5 влечет за собой рост значения предела прочности с 20 до 24 МПа, разрушающей деформации - с 2 до 3 %, удельной энергоемкости деформирования - с 0,5 до 1,0 МДж/м3. При увеличении отношения высоты к диаметру образца с 0,75 до 1,50 наблюдается рост модуля спада: при отношении высоты к диаметру 0,75 модуль спада с увеличением коэффициента трения с 0,1 до 0,5 изменяется с 0,8 до 0,4 ГПа, а при отношении высоты к диаметру 1,50 - с 1,6 до 0,8 ГПа. Обобщая результаты исследований [4-12], можно сказать, что значения предела прочности, разрушающей деформации, модуля спада, удельной энергоемкости деформирования, получаемые при сжатии, в значительной степени зависят от величины силы трения между торцами образца и плитами пресса. При этом интенсивность ее влияния на получаемые значения механических характеристик с увеличением высоты образца снижается [13-16]. Существует ряд способов снижения влияния эффекта трения на значения получаемых показателей механических свойств горных пород, а именно: увеличение высоты образца, использование образцов специальной формы, смазка контактирующих поверхностей, применение нагрузочных плит того же диаметра, что и испытываемый образец и др. Каждый из этих способов обладает своими недостатками. Увеличение высоты образца может привести к снижению его устойчивости, искажению результатов эксперимента. Кроме того, изготовление более высоких образцов при массовых испытаниях приводит к резкому увеличению расхода породного материала, что может вызвать определенные трудности при изготовлении требуемого количества образцов. Использование смазки может привести к искажению экспериментальных данных из-за возможности ее внедрения в породу с последующим расклиниванием образца. Применение образцов специальной формы затруднено из-за сложности их изготовления. Применение нагрузочных плит того же диаметра, что и образец, также не нашло широкого применения из-за трудоемкости эксперимента. На практике при определении предела прочности горных пород используются эмпирические коэффициенты формы [4, 5, 10, 17, 18], позволяющие учесть неоднородность напряженного состояния в образце при сжатии. Применяемые коэффициенты в явном виде не учитывают величину силы трения между торцами образцов и плитами пресса, что приводит к известной неточности в постановке эксперимента и трактовке его результатов. Таким образом, актуальными являются исследования, связанные с более детальным изучением влияния силы трения между образцами и плитами пресса на механические показатели соляных пород. Экспериментальные исследования трения Исследование включало в себя два этапа: 1-й - определение коэффициентов трения соляных пород по различным поверхностям; 2-й - проведение экспериментальных исследований по сжатию образцов различной высоты при известных значениях коэффициента трения. Для определения коэффициентов трения было изготовлено 15 призматических образцов размерами 20×70×70 мм из монолита тонко-среднеслоистой каменной соли, отобранного с ВКМКС. Образцы изготавливались без использования промывочной жидкости на специальном камнерезном оборудовании. Отклонение от плоскостности граней образцов не превышало 0,02 мм, от параллельности - 0,10 мм, от перпендикулярности - 0,50 мм. Перед исследованием все образцы выдерживались в сушильном шкафу при температуре 90 °С до достижения постоянной массы. Эксперименты на трение проводились по схеме «сдвиг со сжатием» на универсальном испытательном комплексе MTS 816 (рис. 1) для трех типов контактов: «соль - полимер», «соль - металл», «соль - абразивный материал». Установка MTS 816 оснащена сервогидравлическим типом привода. При этом жесткость рамы составляет 1,1·109 Н/м. Максимальное усилие на сжатие/растяжение - 496/291 кН. Максимальное усилие сдвигового поршня - 261 кН. Испытательный комплекс оснащен высокоточной системой измерения линейных перемещений сжатия/растяжения, точность - 0,001 мм. Система имеет четыре вертикальных и два горизонтальных датчика для измерения нормальных и сдвиговых деформаций, а также наклона образца во время испытания точностью 0,001 мм. Рис. 1. Вид универсального испытательного комплекса MTS 816 Для исследования контакта «соль - металл» были изготовлены гладкие металлические пластины толщиной 8 мм. В качестве абразивного материала использовалась шкурка марки 14А СФЖУ1С. В качестве полимера применяли винипластовые пластины толщиной 2 мм с графитовой смазкой. Перед испытанием на трение образец фиксировался в нижней матрице испытательной установки с помощью раствора магнезиального цемента, а к верхней матрице жестко крепились испытываемые материалы: винипластовые, металлические или абразивные пластины. Каждый образец проходил серию экспериментов при различных величинах вертикальных нагрузок. Схема нагружения образца в испытательном комплексе представлена на рис. 2. Рис. 2. Схема нагружения образца в испытательном комплексе MTS 816 при определении коэффициентов трения: 1 - образец каменной соли; 2 - поверхность трения (полимер, металл, абразив). N - вертикальная сила; Fтр - сила трения между образцом и испытываемым материалом; Fсдв - сдвиговая сила По результатам испытаний каждого образца строилась зависимость силы трения Fтр, возникающей между испытываемым материалом и торцом образца, от перемещения h образца (рис. 3). Рис. 3. Характерная зависимость силы трения Fтр от перемещения h образца: A и B - точки, соответствующие силам трения покоя и скольжения Определение коэффициента трения покоя µ, соответствующего пиковому значению силы трения (точка А, рис. 3), оказывающей сопротивление движению в процессе начала перемещения образца по испытываемому материалу, осуществлялось согласно закону Амонтона [19]: (1) где N - вертикальная сила, действующая на образец в испытательной установки, кН; Fтр - сила трения между образцом и испытываемым материалом, соответствующая силе (коэффициенту) трения покоя (точка A, рис. 3), кН. Последующая обработка экспериментальных данных заключалась в построении регрессионных зависимостей коэффициента трения от величины вертикальной нагрузки для всех типов рассматриваемых контактов (рис. 4). Анализ экспериментальных данных (см. рис. 4) по методике, изложенной в [20], показал, что зависимости коэффициента трения µ от вертикальной нагрузки P, МПа, для исследуемых типов контактов можно представить в виде (2) где a, b, c - параметры аппроксимации. Искомые значения коэффициентов трения (табл. 1) определялись в виде соответствующих асимптот зависимости (2). Таблица 1 Значения коэффициентов трения различных типов контактов Тип контакта µ Соль - полимер 0,05-0,07 Соль - металл 0,30-0,32 Соль - абразивный материал 0,46-0,50 Рис. 4. Зависимость коэффициента трения покоя от вертикальной нагрузки: а - для контакта «соль - полимер»; б - «соль - металл»; в - «соль - абразивный материал» Анализ результатов испытания соляных образцов на сжатие Для экспериментов на сжатие из монолита тонкосреднеслоистой каменной соли ВКМКС было изготовлено три партии образцов по 20 штук в каждой с отношением высоты к ширине 0,75; 1,25; 1,75. Отклонение от плоскостности граней образцов не превышало 0,02 мм, от параллельности - 0,10 мм, от перпендикулярности - 0,50 мм. Перед исследованием на сжатие все образцы выдерживались в сушильном шкафу при температуре 90 °С до достижения постоянной массы. Эксперименты на сжатие проводились на прессе Zwick/Z250 (рис. 5) в жестком режиме Рис. 5. Вид испытательной машины Zwick/Z250 нагружения с постоянной скоростью деформирования при различных коэффициентах трения между торцами образцов и плитами пресса. Установка Zwick/Z250 имеет электромеханический тип привода. Максимальное усилие на растяжение/сжатие - 250 КН. Скорость перемещения траверсы - 0,001-600 мм/мин. Машина оснащена датчиком перемещения точностью 0,001 мм. Необходимая величина трения при сжатии моделировалась использованием винипластовых, металлических или абразивных прокладок, размещаемых между торцами испытываемых на сжатие образцов и плитами пресса. При сжатии образца в режиме реального времени испытательной машиной велась запись действующей силы N, Н, и соответствующих деформаций l’, мм. «Истинные» деформации образца l, мм, определялись с учетом деформируемости (податливости) пресса: (3) где a1, b1 - параметры аппроксимации, которые определялись после испытания каждого образца по результатам нагружения металлического цилиндра. При этом считалось, что деформации цилиндра пренебрежимо малы, а фиксируемые машиной деформации соответствуют деформациям только испытательной установки. После определения «истинных» деформаций для каждого образца строилась полная диаграмма деформирования в координатах «напряжение - относительная продольная деформация» и определялся комплекс механических показателей: предел прочности, разрушающая деформация, удельная энергоемкость деформирования. Типовая диаграмма деформирования представлена на рис. 6. Предел прочности определялся как наибольшее напряжение, которое способен воспринимать деформируемый образец (см. рис. 6). Разрушающая деформация - это деформация, соответствующая пределу прочности. Удельная энергоемкость деформирования определялась в виде площади, ограниченной диаграммой деформирования и осью продольных деформаций. Рис. 6. Типовая диаграмма деформирования в координатах «напряжение - относительная продольная деформация»: σ - напряжение, МПа; ε - относительная продольная деформация; σпр - предел прочности, МПа; εпр - разрушающая деформация; W - удельная энергоемкость деформирования, МДж/м3 По результатам проведенных экспериментальных исследований получены зависимости предела прочности, разрушающей деформации, удельной энергоемкости деформирования от коэффициента трения и отношения высоты к поперечному размеру испытываемых на сжатие образцов (рис. 7). Анализ экспериментальных данных показал, что значения предела прочности, разрушающей деформации, удельной энергоемкости деформирования, получаемые при сжатии образцов различной высоты, существенным образом зависят от сил трения между торцами образцов и плитами пресса. При этом влияние трения тем больше, чем меньше отношение высоты образца к его поперечному размеру. Рис. 7. Результаты экспериментальных исследований влияния коэффициента трения при сжатии образцов различной высоты на значения механических показателей: а - предела прочности; б - разрушающей деформации; в - удельной энергоемкости деформирования. 1, 2, 3 - зависимости, полученные при сжатии при контакте «соль - полимер», «соль - металл», «соль - абразивный материал» соответственно Так, при коэффициенте трения между торцами образца и плитами пресса, равном 0,48, с увеличением отношения высоты испытываемого образца к его поперечному размеру с 0,75 до 1,75 происходит уменьшение значений рассматриваемых механических показателей: предела прочности - на 44 %; разрушающей деформации - на 66 %; удельной энергоемкости деформирования - на 87 %. При уменьшении коэффициента трения между торцами образца и плитами пресса с 0,48 до 0,06 и возрастании отношения высоты испытываемого образца к его поперечному размеру с 0,75 до 1,75 также было отмечено снижение значений предела прочности на 33 %; разрушающей деформации - на 53 %; удельной энергоемкости деформирования - на 76 %. Таким образом, необходимо отметить, что при отношении высоты к поперечному размеру испытываемых на сжатие образцов, равном 2 и более (см. рис. 7), влиянием трения на получаемые значения механических показателей можно пренебречь. Использование данных сжатия «низких» образцов, с отношением высоты к поперечному размеру менее 2, без поправочных коэффициентов в геомеханических расчетах несущих элементов системы разработки может способствовать значительному завышению прочностных и деформационных характеристик последних и, как следствие, возникновению аварийных ситуаций в калийном руднике. Полученные результаты удовлетворительно сходятся с данными других исследований. Было установлено, что для определения предела прочности σ0, МПа, разрушающей деформации ε0, удельной энергоемкости деформирования W0, МДж/м3, соответствующих одноосному сжатию, справедливы соотношения вида (4) (5) (6) где σпр, εпр, W - значения предела прочности, МПа, разрушающей деформации, удельной энергоемкости деформирования, МДж/м3, полученные по результатам сжатия образцов с отношением высоты к поперечному размеру m при коэффициенте трения между торцами и плитами пресса µ; d1, e1, f1, d2, e2, f2, d3, e3, f3 - параметры аппроксимации. Выражения (4)-(6), определяющие значения механических показателей при одноосном сжатии с учетом формы образца и величины трения на контактах, можно представить в виде (7) где X - значение предела прочности, МПа, разрушающей деформации или удельной энергоемкости деформирования, МДж/м3, полученное по результатам сжатия образца с отношением высоты к поперечному размеру m и коэффициентом трения между торцами и плитами пресса µ; d, e, f - параметры аппроксимации (табл. 2). Таблица 2 Параметры аппроксимации Механический показатель d e f Предел прочности, МПа 0,9…1,0 0,2…0,3 -1,9…-1,6 Разрушающая деформация, % 1,5…1,8 0,3…0,4 -3,0…-2,4 Удельная энергоемкость деформирования, МДж/м3 8,1…10,2 0,5…0,6 -3,4…-2,8 Заключение В ходе исследования выполнен подробный анализ литературных источников, касающихся рассматриваемого круга вопросов. Анализ результатов других исследований позволил сделать вывод о необходимости более детального изучения влияния трения на значения механических показателей соляных пород, определяемых по результатам сжатия образцов. Для выполнения экспериментальной части исследования на специальном камнерезном оборудовании без использования промывочной жидкости из монолита каменной соли, отобранного с Верхнекамского месторождения калийных солей, были изготовлены призматические образцы различной высоты. На первом этапе исследования определены коэффициенты трения соляных пород по различным поверхностям. При этом различные торцевые условия моделировались специально изготовленными прокладками: винипластовыми, металлическими, абразивными. Эксперименты на трение выполнены на высокоточном испытательном комплексе MTS 816 по схеме «сдвиг со сжатием» при различных величинах вертикальной нагрузки. На втором этапе исследования проведен комплекс экспериментов по сжатию соляных образцов различной высоты на электромеханическом прессе Zwick/Z250 при ранее определенных торцевых условиях в виде коэффициентов трения. По результатам экспериментов на сжатие получены зависимости, отражающие влияние сил трения между торцами образцов и плитами пресса при сжатии на значения механических показателей соляных пород: предела прочности, разрушающей деформации, удельной энергоемкости деформирования. Представленные соотношения позволяют учесть влияние торцевых условий на значения механических показателей соляных пород, определяемые по результатам сжатия породных образцов в лабораторных условиях. Результаты исследования предназначены для совершенствования методики испытания горных пород на сжатие.
Об авторах
Иван Леонидович Паньков
Пермский национальный исследовательский политехнический университет
Автор, ответственный за переписку.
Email: imorozov.work@yandex.ru
614990, Россия, г. Пермь, Комсомольский пр., 29
кандидат технических наук, доцент кафедры разработки месторождений полезных ископаемых
Иван Александрович Морозов
Пермский национальный исследовательский политехнический университет
Email: imorozov.work@yandex.ru
614990, Россия, г. Пермь, Комсомольский пр., 29
ассистент кафедры разработки месторождений полезных ископаемых
Список литературы
- Лаптев Б.В. Историография аварий при разработке соляных месторождений // Безопасность труда в промышленности. - 2011. - № 12. - С. 41-46.
- Coates D.F. Classification of rocks for rock mechanics // International Journal of Rock Mechanics and Mining Sciences. - 1964. - Vol. 1, iss. 3. - P. 421-429. doi: 10.1016/0148-9062(64)90008-7
- ГОСТ 21153.2-84. Породы горные. Методы определения предела прочности при одноосном сжатии. - М.: Изд-во стандартов, 1985. - 10 с.
- Проскуряков Н.М., Пермяков Р.С., Черников А.К. Физико-механические свойства соляных пород. - Л.: Недра, 1973. - 271 с.
- Барях А.А., Асанов В.А., Паньков И.Л. Физико-механические свойства соляных пород Верхнекамского калийного месторождения: учеб. пособие. - Пермь: Изд-во Перм. гос. техн. ун-та, 2008. - 199 с.
- Баклашов И.В. Геомеханика: учеб. для вузов: в 2 т. Т. 1. Основы геомеханики. - М.: Изд-во Моск. гос. горн. ун-та, 2004. - 208 с.
- Паньков И.Л., Морозов И.А. Изучение влияния коэффициента трения на механические показатели соляных пород при сжатии образцов различной высоты // Вестник Пермского национального исследовательского политехнического университета. Геология, нефтегазовое и горное дело. - 2013. - № 7. - С. 57-67.
- Морозов И.А. Экспериментальное исследование влияния коэффициента трения на значения показателей механических свойств соляных пород при сжатии образцов различной высоты // Проблемы разработки месторождений углеводородных и рудных полезных ископаемых: материалы VII Всерос. конф. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2014. - С. 397-400.
- Паньков И.Л., Морозов И.А. Исследование влияния коэффициента трения между торцами образцов различной высоты и плитами пресса на механические показатели соляных пород // Известия высших учебных заведений. Горный журнал. - 2015. - № 2. - С. 107-113.
- Прочность и деформируемость горных пород / Ю.М. Карташов, Б.В. Матвеев, Г.В. Михеев, А.Б. Фадеев. - М.: Недра, 1979. - 269 с.
- Peng S.D. Stresses within elastic circular culinders loaded uniaxially und triaxially // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. - 1971. - Vol. 8, iss. 5. - P. 399-432, doi: 10.1016/1365-1609(71)90009-8
- Barton N.R. A model study of rock-joint deformation // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. - 1972. - Vol. 9, iss. 5. - P. 579-582. doi: 10.1016/0148-9062(72)90010-1
- Особенности деформирования и разрушения соляных пород / И.Л. Паньков, В.А. Асанов, А.А. Ударцев, В.С. Кузьминых, В.С. Евсеев // Проблемы безопасности и эффективности освоения георесурсов в современных условиях: материалы науч.-практ. конф. - Пермь, 2014. - С. 304-311.
- Dreyer W. Die Bedeutung von modellversuchen an salzgesteinen für die beurteilung gebursmeсhanisсher probleme im kalibergbau // Bergakademia. - 1964. - № 16.
- Mogi K. Some precise measurements of fracture strength of rocks under uniform compressive strength // Rock Mechanics Engineering Geology. - 1966. - № 4. - P. 41-55.
- Hudson J.A., Brown E.T., Rummel F. The controlled failure of rock discs and rings loaded in diametral compression // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. - 1972. - Vol. 9, iss. 2. - P. 241-244. doi: 10.1016/0148-9062(72)90025-3
- Борщ-Компониец В.И. Практическая механика горных пород. - М.: Горная книга, 2013. - 322 с.
- Указания по защите рудников от затопления и охране подрабатываемых объектов в условиях Верхнекамского месторождения калийных солей (Технологический регламент): согласованы письмом Ростехнадзора № 13-13/1218 от 30.04.2008 г. - СПб., 2008. - 101 с.
- Пенкин Н.С., Пенкин А.Н., Сербин В.М. Основы трибологии и триботехники: учеб. пособие. - М.: Машиностроение, 2008. - 206 с.
- Вуколов Э.А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов Statistica и Excel: учеб. пособие. - М.: Форум, 2008. - 464 с.
Статистика
Просмотры
Аннотация - 256
PDF (Russian) - 38
PDF (English) - 53
Ссылки
- Ссылки не определены.