ВЛИЯНИЕ ЛИТОГЕНЕТИЧЕСКОГО ТИПА ГОРНЫХ ПОРОД НА ФИЛЬТРАЦИОННО-ЕМКОСТНЫЕ СВОЙСТВА (НА ПРИМЕРЕ ПЕРМОКАБОНОВОЙ ЗАЛЕЖИ УСИНСКОГО МЕСТОРОЖДЕНИЯ)

Аннотация


Анализируется разработка методических приемов для дифференциации фильтрационно-емкостных и петрографических свойств в зависимости от фациальной принадлежности. Детально изучено влияние структуры по Данему на изменения фильтрационно-емкостных свойств, в том числе с использованием полноразмерных образцов керна. В качестве объекта исследований выбрана пермокарбоновая залежь Усинского месторождения. Коллекторские характеристики рассматриваемой толщи весьма неоднородны: наряду с высокопористыми и кавернозными породами в разрезе имеются низкопористые и трещиноватые разности, причем это относится к породам разного литологического состава. Изучение фильтрационно-емкостных свойств было проведено более чем на 9000 стандартных образцов керна и около 1000 образцов полноразмерного керна, которые учитывают масштабный фактор и включают в себя микротрещины, каверны большого размера и матрицу породы, соизмеримые с размерами образцов. Для сложнопостроенных карбонатных коллекторов особенно важным является анализ максимального диапазона изменений. В свою очередь на основании проведенных литолого-петрографических и петрофизических исследований авторами было выделено четыре типа коллекторов и восемь различных литогенетических типов, для каждого из которых оценены геолого-физические параметры. На основании построенных графиков накопленной корреляции удалось выделить четыре зоны неоднородности, которые обусловлены влиянием свойств образцов керна разных литогенетических типов. По результатам проведенных петрографических и петрофизических исследований впервые для Усинского месторождения изучено влияние различных петролитотипов на изменения фильтрационно-емкостных свойств коллекторов. С учетом всех проведенных экспериментов установлено, что породы пермокарбоновой залежи Усинского месторождения характеризуются крайней неоднородностью емкостных свойств, меняющихся в широких пределах. В связи с этим необходимо выполнять дифференциации петрофизических связей типа «керн - керн» в зависимости от структуры пустотного пространства и литологического типа пород.


Полный текст

Введение Информация о фильтрационно-емкостных свойствах чрезвычайно важна при составлении проектных документов, при подсчете запасов нефти и газа, для геологического моделирования и планировании геологоразведочных работ. Целью данной работы является детальное изучение влияния структуры по Данему на изменения фильтрационно-емкостных свойств (ФЕС), в том числе с использованием полноразмерных образцов керна. Разрабатываются методические приемы для дифференциации фильтрационно-емкостных и петрографических свойств в зависимости от фациальной принадлежности. Правильность оценки фильтрационно-емкостных свойств разрабатываемых пластов-коллекторов в большой степени зависит от обеспеченности петрофизической основой [1-3]. Лабораторные исследования керна являются единственным прямым способом получения такой информации [4-9]. Лабораторные исследования В качестве объекта исследований была выбрана пермокарбоновая залежь Усинского месторождения. Изучение фильтрационно-емкостных свойств проведено более чем на 9000 стандартных образцов керна и около 1000 образцов полноразмерного керна, которые учитывают масштабный фактор и включают в себя микротрещины, каверны большого размера и матрицу породы, соизмеримые с размерами образцов [10-16]. Для сложнопостроенных карбонатных коллекторов особенно важным является охват максимального диапазона изменения ФЕС [17]. Коэффициент открытой пористости на стандартных образцах керна был определен методом жидкостенасыщения (метод Преображенского) и гидростатического взвешивания с учетом внешних каверн согласно ГОСТ 26450.1-85 [18], коэффициент открытой пористости полноразмерных образцов - методом МР-ИСМ-03-ОЛФИ-046-2013 [19]. В результате литолого-петрографических и петрофизических исследований установлено, что породы изученного разреза обладают неоднородными, но в основном достаточно хорошими фильтрационно-емкостными свойствами, что в свою очередь связано с фациальной принадлежностью: распределение пор, каверн и трещин, а также с их морфологическими особенностями. Как показали данные литолого-петрографических исследований, изученные породы (данного разреза) в своем геологическом развитии подвергались широкому спектру постседиментационных преобразований: уплотнению, перекристаллизации, кальцитизации, доломитизации, окремнению, стилолитизации, трещиноватости и выщелачиванию. Каждый из перечисленных вторичных процессов оказывал неоднозначное влияние на формирование пустотного пространства на различных этапах литогенеза. Интенсивность их проявления в различных по структуре карбонатных породах соответственно также различная. Коллекторские характеристики рассматриваемой толщи весьма неоднородны: наряду с высокопористыми и кавернозными породами в разрезе имеются низкопористые и трещиноватые разности, причем это относится к породам разного литологического состава. Для таких коллекторов особенно важно проводить исследования как на стандартных образцах керна, так и на образцах с сохраненным при выбуривании диаметром, поскольку они наиболее достоверно отражают гидродинамическую картину процессов, протекающих в пласте-коллекторе [20-38]. Встречаются интервалы, где отложения характеризуются низкой матричной пористостью, в то время как проницаемость достигает высоких значений. Изучение емкостного пространства пород данного разреза позволило выявить его структуру, строение и с помощью результатов петрофизических анализов определить типы коллекторов. В целом отложения изученного разреза могут быть отнесены к разноемкому коллектору сложного типа. Для проведения специальных литолого-петрографических и петрофизических исследований из общей выборки была подобрана коллекция из 5000 образцов керна правильной геометрической формы, и на них была определена открытая пористость и абсолютная газопроницаемость. В результате проведенных исследований выделено четыре типа коллекторов, характеризующихся различной структурой порового пространства горных пород (рис. 1): 1. Трещинный коллектор (присутствуют трещины) - определяющая роль трещин в пористости и проницаемости. Рис. 1. Сопоставление открытой пористости и газопроницаемости стандартных образцов карбонатных пород пермокарбоновой залежи 2. Трещинно-каверново-поровый тип коллектора (присутствуют каверны и трещины) - сложный тип коллектора, все виды пустот влияют на ФЕС. 3. Каверново-поровый коллектор - в эту группу вошли образцы, имеющие большую емкость каверн. 4. Поровый коллектор (каверны и/или трещины отсутствуют) - определяющая роль поровых каналов в пористости и проницаемости. Первый тип коллектора характеризуется низкой матричной пористостью. Повышенное значение коэффициента газопроницаемости вызвано трещинами горизонтальной и наклонной ориентировки. Трещины открытые, прерывистые, короткие и протяженные, приурочены к участкам, обогащенным глинистым веществом и стилолитам. По ходу трещин развиваются вторичные поры выщелачивания. Отмечаются единичные минеральные трещины, которые имеют извилистую конфигурацию, прерывистые, выполненные светлым тонко-мелкозернистым кальцитом, в единичных случаях кремнеземом. Во втором типе весьма велика роль трещин как дополнительных путей фильтрации битуминозного органического вещества. Емкость породы определяется вторичными и первичными порами. Среди первичных пор выделяются седиментационные и диагенетической перекристаллизации, среди вторичных - выщелачивания, унаследованные по первичным порам и вновь образованные по трещинам и стилолитам. Трещины не выдержаны по ширине, протяженные и короткие, извилистые и прямолинейные. Участками трещины выщелочены. Присутствует множество нитевидных сомкнутых трещин. Третий тип характеризуется изменением фильтрационно-емкостных свойств в широком диапазоне. Поры и каверны выщелачивания имеют неправильную, удлиненную и изометричную форму. Поры сообщающиеся. Часть мелких межзерновых пор (пор доломитизации / перекристаллизации) частично или полностью заполнена коричневым битуминозным органическим веществом. Некоторые пустоты образованы в результате выщелачивания органических остатков (слепковая пористость). Локально поры заполнены аутигенным кремнистым материалом, который представлен кварцем и реже веерообразным халцедоном. Стилолиты в типе 3 встречаются реже, чем в типе 2. Четвертый тип характеризуется поровым типом коллектора. Развиваются пустоты неравномерно, в основном по цементу, реже - во внутрискелетных полостях органических остатков. Форма пустот самая разнообразная. Отдельные пустоты частично или полностью залечены кальцитом. Мелкие поры иногда заполнены коричневым битуминозным органическим веществом. Некоторые поры имеют форму органических остатков (следовая пористость). Межзерновые и внутриформенные поры иногда развиваются вблизи стилолитовых швов, а также в разделительных пленках стилолитов и по ходу минеральных и открытых трещин. В табл. 1 представлено распределение коэффициента открытой пористости и абсолютной газопроницаемости в зависимости от типа коллектора. Исходя из полученных статистических результатов, можно сделать следующие выводы: к трещинному коллектору относятся 173 образца керна (3,2 %); к трещинно-каверно-поровому - 797 (14,7 %); к каверново-поровому - 1675 (30,9 %); к поровому коллектору - 2782 (51,2 %). Таким образом, большинство образцов из изученной выборки относятся к поровому типу коллектора, а наименьшее количество образцов - к трещинному. Трещинный коллектор характеризуются пористостью до 2 %, в то время как проницаемость достигает значений до 10 Д (Дарси); трещинно-каверно-поровый - изменением открытой пористости в диапазоне от 0 до 17 % и газопроницаемостью выше 1 Д; каверново-поровый - открытой пористостью в диапазоне от 0 до 27 % и газопроницаемостью выше 1 Д; в поровом коллекторе - открытая пористость варьируется в широких пределах - от 0 до 37 %, газопроницаемость - до 1 Д. Анализ полученных результатов На основании проведенных литолого-петрографических исследований установлено, что в породах Усинского месторождения выделяются следующие литогенетические типы: мадстоуны, вакстоуны, пакстоуны, грейнстоуны, баундстоуны, флаутстоуны, рудстоуны и кристаллический карбонат. В табл. 2 приведено сопоставление типов структуры по Данему с их геолого-физическими параметрами. Анализ средних значений дисперсий и интервалов параметров показывает, что однозначно разделить на типы структур по геолого-геофизическим параметрам нельзя [39-46]. Удалось установить, что из изученных литогенетических типов наилучшими фильтрационно-емкостными свойствами обладает кристаллический карбонат: средняя открытая пористость составляет 19,51 %, средняя абсолютная газопроницаемость - 106,71 мД. Наихудшими фильтрационно-емкостными свойствами обладают флаутстоуны: средняя открытая пористость - 7,65 %, средняя абсолютная газопроницаемость - 6,41 мД. С целью детального изучения влияния литологических особенностей на изменения емкостных свойств для 5000 образцов керна был построен график накопленной корреляции Пирсона от коэффициента открытой пористости (рис. 2, а). Разрывы, перерывы и кривизна на графике отражают изменение структуры порового пространства в разных диапазонах и позволяют выделить зоны неоднородности. Как можно увидеть, на графике выделяются четыре зоны. Это обусловлено влиянием свойств образцов керна, которые принадлежат к разным литогенетическим типам. Таблица 1 Распределение коэффициента открытой пористости и абсолютной газопроницаемости в зависимости от типа коллектора Параметр Тип коллектора Общее количество, шт. трещинный трещиннокаверно-поровый каверново-поровый поровый абс. % абс. % абс. % абс. % Кп, %: от 0 до 5 (зона 1) 173 7,2 665 27,5 714 29,5 866 35,8 2418 от 5 до 12 (зона 2) 0 0,0 131 10,3 595 46,6 551 43,1 1277 от 12 до 20 (зона 3) 0 0,0 1 0,1 339 33,9 661 66,0 1001 Выше 20 (зона 4) 0 0,0 0 0,0 27 3,7 704 96,3 731 Среднее значение по всем зонам 173 3,2 797 14,7 1675 30,9 2782 51,2 5427 Кпр, мД: 0,01-1 (зона 1) 56 2,0 450 16,1 835 29,9 1448 51,9 2789 от 1 до 10 (зона 2) 64 6,1 161 15,4 305 29,2 513 49,2 1043 от 10 до 100 (зона 3) 39 3,8 126 12,4 296 29,2 552 54,5 1013 выше 100 (зона 4) 14 2,4 60 10,3 239 41,1 269 46,2 582 Среднее значение по всем зонам 173 3,2 797 14,7 1675 30,9 2782 51,2 5427 2 Таблица 2 Соотношение классификации пород по Данему и полученных в лабораторных условиях геолого-физических параметров пород Тип структуры по Данему Геолого-физический параметр количество определений, шт. проницаемость, 10-3 мкм2 пористость, % плотность мин., г/см3 содержание кальцита, % содержание доломита, % нераст. ост., % Мадстоун 6 152,42 ± 129,17 3,27-227,00 10,14 ± 7,18 1,85-14,28 2,68 ± 0,01 2,68-2,69 35,90 ± 28,20 19,60-68,50 3,00 ± 5,25 0,00-9,10 61,00 ± 33,46 22,40-80,40 Вакстоун 14 8,08 ± 12,30 0,01-26,01 5,35 ± 0,93 3,99-6,00 2,70 ± 0,02 2,67-2,72 93,10 ± 10,60 77,40-100,00 0,70 ± 1,45 0,00-2,90 6,20 ± 10,95 0,00-22,60 Пакстоун 225 9,13 ± 33,47 0,01-257,20 6,62 ± 5,84 0,59-27,02 2,70 ± 0,02 2,64-2,83 86,50 ± 22,16 0,00-100,00 5,20 ± 16,52 0,00-98,00 8,30 ± 15,90 0,00-74,80 Грейнстоун 190 13,16 ± 35,41 0,01-242,60 9,33 ± 6,32 0,51-22,45 2,70 ± 0,01 2,66-2,74 95,60 ± 7,10 52,70-100,00 0,10 ± 0,61 0,00-6,80 4,40 ± 7,05 0,00-47,30 Баундстоун 427 97,85 ± 325,33 0,01-2016,00 6,90 ± 5,98 0,37-25,58 2,70 ± 0,02 2,64-2,84 93,50 ± 11,36 0,00-100,00 1,10 ± 7,68 0,00-100,00 5,40 ± 8,07 0,00-70,20 Флаутстоун 43 6,41 ± 13,95 0,01-46,97 7,65 ± 6,64 0,73-21,91 2,72 ± 0,05 2,68-2,88 88,20 ± 22,81 0,00-100,00 7,30 ± 21,04 0,00-86,80 4,50 ± 3,80 0,00-13,20 Рудстоун 197 10,87 ± 46,56 0,01-300,50 4,50 ± 4,00 0,98-21,89 2,69 ± 0,02 2,62-2,78 94,10 ± 8,63 52,90-100,00 3,00 ± 7,69 0,00-47,10 2,90 ±3,57 0,00-22,20 Кристаллический карбонат (доломит) 148 106,71 ± 200,27 0,01-1055,00 19,51 ± 9,73 0,94-37,02 2,80 ± 0,04 2,69-2,84 18,40 ± 32,87 0,00-99,00 74,70 ± 32,02 0,00-98,60 7,00 ± 6,98 0,00-33,60 Примечание: в числителе - коэффициент газопроницаемости, мД; в знаменателе - номер зоны. а б в г Рис. 2. График изменения коэффициента корреляции Пирсона: а - от открытой пористости для всей выборки образцов; б - от открытой пористости для образцов с выделенной структурой по Данему; в - от абсолютной газопроницаемости для всей выборки образцов; г - от абсолютной газопроницаемости для образцов с выделенной структурой по Данему. На графиках приведены образцы стандартного размера Для оценки влияния на емкостные свойства образцов с различной литогенетической принадлежностью на материале более чем 1000 образцов, на которых удалось выделить принадлежность к определенной структуре по Данему, был построен аналогичный график накопленной корреляции Пирсона от коэффициента открытой пористости (рис. 2, б). Аналогично рис. 2, а, на графике можно наблюдать четыре зоны. Несмотря на меньшую выборку, характер графика является в целом идентичен представленному на рис. 2, а. Как видно из рис. 2 (а, б) в диапазоне открытой пористости от 0 до 5 % в зоне 1 наблюдается рассеивание точек по образцам керна. В диапазоне пористости от 5 до 20 % корреляционная связь демонстрирует плавный рост при некоторых разрывах корреляционной связи, которые обусловлены изменением структуры пустотного пространства и влиянием пород различных литогенетических типов. Начиная с пористости 20 % (зона 4) происходит почти полная стабилизация. Это обусловлено вкладом в пустотное пространства пород в основном только одного литогенетического типа - кристаллического карбоната. В табл. 3 показан вклад структуры по Данему на распределение открытой пористости по всему диапазону свойств для каждой из зон. Для открытой пористости в диапазоне от 0 до 20 % наибольший вклад несут баундстоуны, выше 20 % - кристаллический карбонат. В наименьшей степени влияние оказывают мадстоуны, вакстоуны и флаутстоуны. Для определения влияния литологических особенностей на изменения фильтрационных свойств для 5000 образцов керна был построен график накопленной корреляции Пирсона от коэффициента абсолютной газопроницаемости для всей выборки (рис. 2, в) и для образцов, на которых была выделена структура по Данему (рис. 2, г). Количество зон на графиках выделяется по аналогии с другими данными, представленными на рис. 2 (а, б). Это обусловлено схожестью процессов влияния литогенетических типов на фильтрационно-емкостные свойства изучаемых коллекторов. Для распределения абсолютной газопроницаемости во всем диапазоне свойств наибольший вклад несут баундстоуны (см. табл. 3). Это означает их равномерное распределение и сильное влияние по всему диапазону свойств. Наименьшее влияние несут мадстоуны, вакстоуны и флаутстоуны. Таблица 3 Вклад структуры по Данему на распределение открытой пористости и газопроницаемости по всему диапазону свойств Параметр Мадстоун Вакстоун Пакстоун Грейнстоун Баундстоун Флаутстоун Рудстоун Кристал-лический карбонат Об-щее абс. % абс. % абс. % абс. % абс. % абс. % абс. % абс. % абс. Кп, %: от 0 до 5 (зона 1) 1 0,4 2 0,8 60 22,6 25 9,40 95 35,7 10 3,8 67 25,2 6 2,1 266 от 5 до 12 (зона 2) - - 4 2,4 41 24,6 19 11,4 56 33,5 8 4,8 30 18,0 9 5,4 167 от 12 до 20 (зона 3) 2 1,4 1 0,8 17 12,9 38 28,8 34 27,3 6 4,5 18 13,6 16 12,1 132 выше 20 (зона 4) 1 1,4 3 4,1 15 20,3 7 9,5 16 23,0 1 1,4 8 10,8 23 31,1 74 Среднее значение по всем зонам 4 0,6 10 1,6 133 20,8 89 13,9 201 31,5 25 3,9 123 19,2 54 8,5 639 Кпр, мД: 0,01-1 (зона 1) - - 5 1,4 86 24,7 41 11,8 110 31,6 15 4,3 77 22,1 14 4,0 348 от 1 до 10 (зона 2) 2 1,6 3 2,3 22 17,1 20 15,5 38 29,5 6 4,7 27 20,9 11 8,5 129 от 10 до 100 (зона 3) - - 2 1,7 20 17,4 24 20,9 32 27,8 2 1,7 17 14,8 18 15,7 115 выше 100 (зона 4) 2 4,3 - - 5 10,6 4 8,5 21 44,7 2 4,3 2 4,3 11 23,3 47 Среднее значение по всем зонам 4 0,6 10 1,6 133 20,8 89 13,9 201 31,5 25 3,9 123 19,2 54 8,5 639 Рис. 3. Сопоставление газопроницаемости карбонатных пород пермокарбоновой залежи параллельно и перпендикулярно напластованию Отличительной чертой коллекторов Усинского месторождения является резкая анизотропия фильтрационных свойств. Проницаемость полноразмерных образцов по направлениям изменяется на 1-2, иногда на 3 порядка, в отдельных случаях разница достигает 4 порядков. Сопоставление газопроницаемости по направлениям представлено на рис. 3. На графике выделены четыре зоны. Можно наблюдать, что в зависимости от зоны определяется разная степень азимутальной неоднородности. В зоне 1 и 2 азимутальная анизотропия является не такой значительной, как в зонах 3 и 4. Газопроницаемость, измеренная в направлении, параллельном напластованию, колеблется в пределах (0,01-15578,66)10-3мкм2 при среднем значении 430,20∙10-3 мкм2, а перпендикулярно напластованию в пределах -(<0,01-11467,87)10-3 мкм2 при среднем значении 222,37∙10-3 мкм2. Коэффициент анизотропии - величина, выражаемая квадратным корнем из частного от деления значения проницаемости пласта в горизонтальном направлении на проницаемость его по вертикали, - составил 1,58. Необходимо отметить, что породы Усинского месторождения наряду с вертикальной обладают также и латеральной анизотропией. Коэффициент латеральной анизотропии составляет 1,34. Заключение На основании литолого-петрографических и петрофизических исследований для Усинского месторождения было изучено влияние, которое оказывают различные петролитотипы на изменения фильтрационно-емкостных свойств коллекторов. Авторами выделено четыре типа коллекторов и восемь различных литогенетических типов, для каждого из которых оценены геолого-физические параметры. На основании построенных графиков накопленной корреляции удалось выделить четыре зоны неоднородности, которые обусловлены влиянием свойств образцов керна разных литогенетических типов. Оценен эффект влияния структурной неоднородности и влияние литогенетического типа на изменение фильтрационно-емкостных свойств во всем их диапазоне. В результате исследований на полноразмерном керне с учетом выделенных зон впервые удалось оценить степень азимутальной анизотропии для каждой из зон. С учетом всех проведенных экспериментов установлено, что породы пермокарбоновой залежи Усинского месторождения характеризуются крайней неоднородностью емкостных свойств, которые меняются в широких пределах. В связи с этим необходимо выполнять дифференциации петрофизических связей типа «керн - керн» в зависимости от структуры пустотного пространства и литологического типа пород.

Об авторах

Никита Андреевич Попов

Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Автор, ответственный за переписку.
Email: Nikita.Popov@pnn.lukoil.com
Пермь, Россия

начальник Управления комплексных исследований керна Центра исследования керна и пластовых флюидов

Иван Сергеевич Путилов

Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Email: Ivan.Putilov@pnn.lukoil.com
Пермь, Россия

доктор технических наук, заместитель директора филиала по научной работе в области геологии

Анастасия Андреевна Гуляева

Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Email: Anastasija.Guljaeva@pnn.lukoil.com
Пермь, Россия

инженер 2-й категории отдела подсчета запасов северной группы месторождений Волго-Уральского региона

Екатерина Евгеньевна Винокурова

Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Email: Ekaterina.Vinokurova@pnn.lukoil.com
Пермь, Россия

главный специалист отдела литологии и стратиграфии Управления комплексных исследований керна Центра исследования керна и пластовых флюидов

Юлия Владимировна Файрузова

Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми

Email: Yulija.Fairuzova@pnn.lukoil.com
Пермь, Россия

геолог 2-й категории отдела геологического моделирования Тимано-Печорского региона

Список литературы

  1. Гурбатова И.П., Мелехин С.В., Юрьев А.В. Особенности изучения петрофизических и упругих свойств керна в сложнопостроенных коллекторах нефти и газа при моделировании термобарических пластовых условий // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2010. - № 5. - С. 67-72.
  2. Костин Н.Г., Губайдуллин М.Г. Влияние размеров исследуемых образцов керна на величину коэффициента пористости карбонатных и терригенных коллекторов // Геологические опасности: материалы ХV Всерос. конф. с междунар. участием. - Архангельск, 2009. - С. 248-250.
  3. Петерсилье В.И., Рабиц Э.Г., Белов Ю.Я. Методы и аппаратура для изучения фильтрационно-емкостных свойств пород-коллекторов на образцах большого размера. - М.: Недра, 1980. - 53 с.
  4. Алексин Г.А., Клещев А.А., Россихин Ю.А. Перспективы поисков нефти и газа на севере Тимано-Печорской провинции. - М.: ВНИИОЭНГ, 1982. - 44 с.
  5. Dougias R., Rasoul A. Reconsidering Klinkenbergs permeability data. - SCA. Norway, 2018. - 1 p.
  6. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. - SCA. Norway, 2018. - 2 p.
  7. Shaw D., Mastaghimi P., Hussein F., Armstrong R. Insights, trends and challenges associated with measuring goal relative permeability. - SCA. Norway, 2018. - 10 p.
  8. Pruno S., Rodvent H.E., Scjaeveland O. Measurement of spontaneous imbibition capillary pressure saturation and resistivity index by counter technique at net reservoir stress and elevated temperature. - SCA. Norway, 2018. - 2 p.
  9. A fast method for trapped gas determination / P. Faurissoux, M. Lutui-Tefuka, C. Caubit, B. Lalanne, B. Nicot. - SCA. Norway, 2018. - 2 p.
  10. Гурбатова И.П., Михайлов Н.Н. Изучение анизотропии сложнопостроенных карбонатных коллекторов лабораторными методами // Актуальная проблема развития нефтегазового комплекса России: сб. тез. докл. VIII Всерос. науч.-техн. конф. - М., 2010. - Ч. 1. - С. 94-95.
  11. Гурбатова И.П., Кузьмин В.А., Михайлов Н.Н. Влияние структуры порового пространства на масштабный эффект при изучении фильтрационно-емкостных свойств сложнопостроенных карбонатных коллекторов // Геология нефти и газа. - 2011. - № 2. - С. 74-82.
  12. Особенности изучения карбонатных пород-коллекторов лабораторными методами / Фил. ООО «ЛУКОЙЛ-инжиниринг» «ПермНИПИнефть» в г. Перми; И.П. Гурбатова, Д.В. Глушков, П.Н. Рехачев, С.В. Мелехин, Н.А. Попов. - Пермь: Астер Диджитал, 2017. - 264 с.
  13. Михайлов Н.Н., Гурбатова И.П. Масштабный эффект при лабораторном определении фильтрационно-емкостных свойств сложнопостроенных карбонатных коллекторов // Технологии нефти и газа. - 2011. - Т. 75, № 4. - С. 32-35.
  14. Эпоха полноразмерного керна при лабораторных исследованиях технологий повышения нефтеотдачи пластов / И.С. Путилов, П.Н. Рехачев, И.П. Гурбатова, Н.Н. Барковский, О.И. Якимов, О.А. Морозюк // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. - 2016. - Т. 15, № 19. - С. 155-164. doi: 10.15593/2224-9923/2016.19.6
  15. Суходанова С.С. Создание 3D-модели залежи с карбонатными трещиноватыми коллекторами на основе комплексирования гидродинамических, геофизических, сейсмических и промысловых данных (на примере нижнепермских отложений Варандейского месторождения): дис.. канд. техн. наук: 25.00.17. - М., 2016. - 157 с.
  16. Advances in core evaluation. Accuracy and precision in reserves estimation // Reviewed Proceedings of the First Society of Core Analysts European Core Analysis Symposium. - London, 1990. - 567 p.
  17. Сборник сметных норм на геологоразведочные работы. - Вып. 7: Лабораторные исследования полезных ископаемых и горных пород. - М.: ВИЭМС, 1993. - 70 с.
  18. ГОСТ 26450.1-85. Породы горные. Метод определения коэффициента открытой пористости жидкостенасыщением. - М.: Изд-во стандартов, 1985. - 7 с.
  19. МР-ИСМ-03-ОЛФИ-046-2013. Горные породы. Определение коэффициента открытой пористости газоволюметрическим методом. - Пермь: Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми, 2013. - 22 с.
  20. Губайдуллин М.Г., Белозеров И.П., Юрьев А.В. Экспериментальные исследования относительных фазовых проницаемостей и коэффициента вытеснения нефти водой в сложнопостроенных коллекторах // Геология, геофизика и разработка нефтяных и газовых месторождений. - 2017. - № 2. - С. 49-52.
  21. Двухфазная фильтрация в трансверсально-изотропной пористой среде. Теория и эксперимент / М.Н.Дмитриев, В.В. Кадет, М.Н. Кравченко, С.Г. Россохин // Известия РАН. - 2004. - № 4. - С. 92-97.
  22. Экспериментальное изучение фильтрационных свойств анизотропных коллекторов углеводородного сырья / Н.М. Дмитриев, А.Н. Кузьмичев, Н.Н. Михайлов, В.М. Максимов // Бурение и нефть. - 2015. - № 11. - С. 6-9.
  23. Желтов Ю.В., Кудинов В.И., Малофеев Г.Е. Разработка сложнопостроенных месторождений вязкой нефти в карбонатных коллекторах. - М.: Нефть и газ, 1997. - 387 с.
  24. Зайнутдинов Р. С. Совершенствование метода определения остаточной нефтенасыщенности пластов по керну для оценки коэффициентов вытеснения нефти водой: дис.. канд. техн. наук: 05.15.06. - Уфа, 1998. - 162 с.
  25. Зубков М.Ю., Микулина О.И., Пушин А.В. Результаты исследований относительных фазовых проницаемостей разновозрастных продуктивных отложений Красноленинского месторождения // Вестник недропользования Ханты-Мансийского автономного округа. - 2012. - № 25. - С. 42-52.
  26. Маскет М. Течение однородных жидкостей в пористой среде. - М.: Издательство НИЦ Регулярная и хаотическая динамика, 2004. - 629 с.
  27. Изучение остаточного нефтенасыщения разрабатываемых пластов / Н.Н. Михайлов, А.В. Джемесюк, Т.Н. Кольчицкая, Н.А. Семенова. - М.: Изд-во ВНИИОЭНГ, 1990. - 59 с.
  28. Тульбович Б.И. Методы изучения пород-коллекторов нефти и газа. - М.: Недра, 1979. - 301 с.
  29. Некоторые результаты оценки влияния способов экстракции нефтенасыщенных карбонатных пород на их коллекторские свойства / Н.Ш. Хайрединов, А.А. Губайдуллин, Е.А. Юдинцев, С.А. Блинов // Труды ТатНИПИнефть. - Бугульма, 1987. - № 60. - С. 103-109.
  30. Шванов В.Н., Фролов В.Т., Сергеева Э.И. Систематика и классификация осадочных пород и их аналогов. - СПб.: Недра, 1998. - 521 с.
  31. Herrera R.G., Fernando S.V., Hernandez F.P. On the petrophysics of carbonate reservoirs through whole cole analysis // Society of Petroleum Engineers, International Petroleum Conference and Exhibition of Mexico, 10-13 October. - Veracruz, Mexico, 1994.
  32. Pore geometry of carbonate rocksand capillary pressure curves / R.L. Jodry, G.V. Cinilingarian, S.J. Mazzuiloand, H.H. Rieke // Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. - Part I. - Elsevier, Amsterdam, 1992. - 670 p.
  33. Fluid flow through carbonate rock sytems / V.F. Samaniego, G.V. Chilingarian, S.J. Mazzullo, H.H. Rieke // Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. - Part I. - Elsevier, NewYork, 1992. - P. 439-503.
  34. Skopec R.A. Proper coring and wellsite core handling procedures: the first step toward rliable core analysis // J. Pet. Tech. April. - 1994. - Vol. 33, № 3. - 280 p.
  35. Chilingarin G.V., Mazzullo S.J., Rieke H.H. Carbonate reservoir characterization: a geologic - engineerin analysis. - Part 2. - Elsevier, 1996. - 993 p.
  36. Denney D. Whole Core vs. plugs: integrating log and core data to decrease uncertainty in petrophysical interpretation and oil-in-place calculations // Journal of Petroleum Technology. - 2011. - Vol. 63. - SPE, № 0811-0058-JPT. - P. 58-60.
  37. Honarpour M.M., Mahmood S.M. Relative-permeability measurements: an overview // journal of petroleum technology. - 1998. - Vol. 40. - SPE, № 18565-PA. - P. 15-19.
  38. McPhee C.A., Arthur K.G. Relative Permeability Measurements: An Inter-Laboratory Comparison // European Petroleum Conference, 25-27 October. - London, United Kingdom, 1994. - P. 199-211.
  39. Дементьев Л.Ф. Статистические методы обработки и анализа промыслово-геологических данных. - М.: Недра, 1966. - 206 с.
  40. Мирзаджанзаде А.Х., Степанова Г.С. Математическая теория эксперимента в добыче нефти и газа. - М.: Недра, 1977. - 228 с.
  41. Чини Р.Ф. Статистические методы в геологии. - М.: Мир, 1986. - 189 с.
  42. Шарапов И.П. Применение математической статистики в геологии. - М.: Недра, 1965. - 260 с.
  43. Johnson N.L., Leone F.C. Statistics and experimental design. - New York - London - Sydney - Toronto, 1977. - 606 p.
  44. Montgomery D.C., Peck E.A. Introduction to liner regression analysis. - New York: John Wiley & Sons, 1982. - 504 p.
  45. Watson G.S. Statistic on spheres. - New York: John Wiley and Sons, Inc., 1983. - 238 p.
  46. Yarus J.M. Stochastic modeling and geostatistics // AAPG. - Tulsa, Oklahoma, 1994. - 231 p.

Статистика

Просмотры

Аннотация - 327

PDF (Russian) - 86

PDF (English) - 97

Ссылки

  • Ссылки не определены.

© Попов Н.А., Путилов И.С., Гуляева А.А., Винокурова Е.Е., Файрузова Ю.В., 2020

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах