Прогнозирование результатов гидроразрыва пласта с использованием теории информации

Аннотация


Гидроразрыв пласта позволяет увеличить дебиты скважин и сократить время извлечения нефти из пластов. В статье рассмотрены карбонатные отложения Пермского края. На этих залежах активно проводится гидроразрыв пласта. Для правильного планирования гидроразрыва пласта необходимо определить основные факторы, влияющие на дебит нефти после мероприятия. В исследовании использовалась теория информации для выявления основных факторов, влияющих на результаты гидроразрыва пласта. Для рассматриваемых месторождений основные факторы - обводненность до мероприятия, ширина трещины, длина трещины, дебит нефти до мероприятия. Имея данные об этих параметрах, можно с высокой достоверностью прогнозировать проведение гидроразрыва пласта. Построена модель прогнозирования результатов ГРП методом множественной линейной регрессии. Проведен статистический анализ ключевых параметров с построением диаграмм размаха среднего, максимального, медианного, квартильного и минимального значений для каждого параметра. Данные по скважинам разделили на две группы и выполнен анализ результатов по всем параметрам. Получено, что коэффициент продуктивности увеличивается с увеличением дебита нефти после гидроразрыва пласта и ширины трещины, причем наибольшее значение характеризовало группу B; поэтому ожидается, что дебит в этой группе будет большим. Остальные параметры в группах A и B были схожими. Абсолютное отклонение рассчитанных по второй модели значений дебита нефти после гидроразрыва пласта составило от 1,287 до 0,662 по сравнению с расчетными значениями по первой модели. Относительное отклонение от 4,1 % в первой модели до 2,4 % во второй модели. Полученные результаты позволят оперативно прогнозировать проведение гидроразрыва пласта на новых скважинах.

Полный текст

Introduction Hydraulic fracturing is a popular method for increasing well production rates [1]. Fractures change permeability near the wellbore. For successful hydraulic fracturing, it is necessary to study the relationship between hydraulic fracturing parameters and the operational characteristics of the oil reservoir [2]. In [3] it is noted that the length of the fracture, the number of fractures and the distance between wells must be taken into account when optimizing hydraulic fracturing in wells. Also, when forecasting, it is necessary to take into account the influence of the initial flow rate, wellbore diameter, fluid viscosity, formation permeability, wellbore diameter on the production of a horizontal well [4]. Poroelastic characteristics of porous media, such as skeletal compressibility and elastic modulus, influence the behavior of porous rocks and their cracking [5]. The nonlinearity of fluid flow affects the shape of the outflow vector and return flow through fracture zones, as well as the amount of fluid to be exchanged between fractures and the porous zone. Accordingly, these parameters also affect the well's design flow rate after hydraulic fracturing. When fluid moves through the perforations, a vortex flow occurs near the entrance to the crack, which causes turbulence. Eddy influences the fluid flow to the well [6]. The rate of injection of hydraulic fracturing fluid, its viscosity and the location of perforations in the oil reservoir also affect the results of hydraulic fracturing. The results of hydraulic fracturing can be assessed by the relationship between the width of the hydraulic fracture and the filling of proppant. In this case, it is necessary to take into account the size of proppant particles, sand concentration, fluid injection volume and proppant crushing rate [7, 8]. Injecting a larger proppant leads to an increase in the intensity of its shielding from the walls of fractures [9]. Cracks become more dispersed, and the laws of crack development become more complex. The greater the difference in the strength parameters of the proppant and matrix, the stronger the cracks are filled with proppant. In [10] the influence of such operational parameters on the results of hydraulic fracturing, such as the azimuth of the wellbore, the distance between fractures and their relative positions, is noted. When the anisotropy angle changes from 0° to 90°, the rock rupture pressure first increases and then decreases. As the injection rate increases, there is an obvious tendency for the burst pressure to decrease [11]. Under uniaxial stress, the change in anisotropy angle is close to 45° and the decrease in injection rate contributes to a more tortuous crack propagation path. Rocks with low injection rates and high anisotropy angles (> 45°) can achieve optimal fracturing results. The propagation of cracks during hydraulic fracturing and the well flow rate depend on the stress field. In a saturated porous reservoir, the stress field is highly dependent on flow conditions, reservoir properties, and heterogeneity [12]. Flow boundary conditions are important if the time scale of pore diffusion from the injection well to the boundary occurs well before hydraulic fracturing begins. The existence of natural fractures in the formation has a great influence on fluid filtration. The orientation and strength of natural fractures have a major influence on the width, volume and shape of the fracture after hydraulic fracturing [13]. The viscosity of the hydraulic fracturing fluid has a greater influence on fracture propagation and well production after hydraulic fracturing. It is important to control the propagation of hydraulic fractures to improve hydrodynamic connectivity between wells. Natural fractures have a dominant influence on the propagation of hydraulic fractures, the second most important factor being stress [14]. Fluid injection pressure control may be limited by the performance of the field equipment. However, the influence of layered heterogeneity on crack propagation is still unclear [15-17]. To accurately predict the propagation of hydraulic fractures in a real formation, it is extremely important to take into account the roughness of real natural fractures and the uneven distribution of mechanical parameters [18, 19]. The inflow rate of the fracturing fluid decreases linearly, and the degree of proppant deposition increases linearly with increasing density of the fracturing fluid [20]. the proppant settlement rate increases by 3.5 times as the proppant particle size increases from 0.25 mm to 1.65 mm. Selecting a lower fracturing fluid density and smaller proppant particle size can provide higher fluid recovery efficiency. In [21] calculated and verified the effects of productivity parameters of fractured horizontal wells in Bakken tight oil reservoirs using information amount theory. The results shows that the method is effective in verifying the impact a variety parameters on the wells productivities. The authors are proved that information amount theory, orthogonal experiment design (OED) and Grey Relational The analysis process and principles of the above methods are different from each other, but their results are similar. It is noted that the main factors influencing the efficiency of hydraulic fracturing are the length and width of the fracture, and the geological parameters of the formation. In the presence of the main factors influencing the results of hydraulic fracturing, using regression analysis we can build a model for predicting the results of hydraulic fracturing [22, 23]. Comparison of indicators in a single probabilistic space makes it possible to build individual probabilistic models for predicting production after hydraulic fracturing [24-26]. The regression equations obtained from the least squares method are strong in terms of fitting the sensitive parameters and the model follows the same trend as the numerical simulation data [27, 28]. To build a nonlinear regression model, we need to accurately initialize the model parameters [29]. The least absolute deviation method has significantly lower efficiency than the least squares method [30, 31]. If the fracture array geometry is idealized as a set of regular and planar fractures, history matching and production forecast may be inaccurate [32]. You can also predict hydraulic fracturing results using a Decision Tree, but this is more labor-intensive [33]. Because hydraulic fracturing models involve complex physics and uncertainties driven by many variables, there is a challenge in calibrating model results with actual field data [34, 35] The greatest influence on the productivity of wells after hydraulic fracturing is exerted by bottomhole pressure and productivity indicators before hydraulic fracturing [36, 37]. The discovered cause-and-effect relationship between production and geological and technical factors coincides with the real physical mechanism [38]. Proper design of hydraulic fracturing significantly improves its productivity [39]. A key factor in developing hydraulic fracturing technology is optimizing fracture geometry [40]. This is confirmed by multiple equally probable implementations of fracture permeability prediction [41, 42]. In this study, based on information amount theory, the most important factors for predicting net production after hydraulic fracturing for a field in the Perm region were identified. Oil deposits in the Perm region are characterized by high depletion of reserves, complex mining and geological conditions involving the development of heterogeneous carbonate reservoirs with low capacitance properties and reservoirs containing high viscosity oil. This is due to the fact that the region is a former oil producing area. It is inefficient to develop areas with similar conditions using natural methods or water flooding with traditional water, as recovery rates and oil recovery factors are very low, ranging from 2,5 to 30 % [43-45]. Method and study area In the name of quickly and accurately discovering the key productivity factors in the design and construction of hydraulic fracturing wells, the theory is used to calculate and verify the twelve parameters of in 21 fractured wells in carbonate reservoirs, in order to learn about their correlation and impact on productivity. In order to create a multi-variable model to estimate the oil production post-frac increase, the well sample is divided into two roughly parts, comprising wells Qo_post-frac less than 5,8 tons/day group A and wells Qo_post-frac greater than 5,8 tons/day group B. Results show fracture length, fracture width, Propant Height, Net pay, bubble pressure, pre-frac productivity index, Proppant Total, Specific polymer consumption for placement of 1 ton of proppant, Main Frac fluid volume, pre-frac fluid production rate, pre-frac water cut and pre-frac oil production rate as secondary parameters. Selecting twenty-one frac wells in one of the Perm oil fields: 484, 471, 16, 16, 9044, 510, 256, 483, 112, 29, 29, 452, 73, 73, 522, 165, 503, 515, 451, 50. Taking the oil field as an example to calculate the impact of various parameters on frac well productivity, the well parameters of the K-Pd (Kashirskiy and Podolskiy) carbonate reservoirs are presented in Table 1. The following is a description of the fundamental Information amount theory process: divide the objects into two groups or intervals, A and B, based on a criterion; count the frequency of the factors in each group; compute the frequencies again to verify the degree of difference between the group A and B. The greater degree of the difference. The more different, the bigger information amount is, and the bigger influence degree is. Calculate and analyze the amount of information for each factors using this method. Procedures are as follows: Each factor will be counted separately in different ranges and the frequencies of group A and group B will be calculated. Further calculation can obtain the distribution of the difference between A and B. the difference is greater so the amount of information is greater. The calculation steps are as follows: (1) Count the separate frequency of parameters in group A and B. (2) Convert the frequency into probability (%) yAθ and where θ is the interval serial number. (3) Calculate average probability ratio in each interval. The formula is (1) (4) Calculate the average frequency ratio (5) Calculate the diagnosis coefficient (6) Calculate the amount of information on each parameters change interval (2) (7) Calculate the total amount of information According to the above method, the information content of these twelve parameters is calculated as shown in Table 2. In Table 3 in Fig. 1 shows the results of ranking geological and technological parameters. The speed and time of water movement at specified distances were estimated. In Fig. 1 shows an image of the computational hydrodynamic model. Multiple linear regression By definition, multiple linear regression is a method to compare several independent variables to one dependent variable. This approach accounts for the effect of all variables simultaneously and fits a linear relationship to each variable; however, a multiple linear regression assumes a linear among the input and output variables. Eq. 2 illustrates the model with n predictor variables X1, X2 …., Xn and response qCl, as follows: qCl = A0 + A1x1i + A2x2i +….+ Anxni. (3) According to the values of the correlation coefficients r of the dependences of the actual production rate q0, on the factors and statistical significance p, the degree of the influence of these factors on the first model calculated oil production rate after hydraulic fracturing is determined. Further, the regression model is built by the method of multiple linear regression. The regression equation in the first model after statistical simulation is written as follow: qC1 = 8,711 - 1,217h + 1,263Lf - 0,010Wf . (4) Relationship between the results from first model calculated qC1 and q0 values for wells of the Kashirsky and Podolsky carbonate deposits of Perm region fields shown in Fig. 2. The significance of independent variables was confirmed by using the analysis of variance (ANOVA) as shown in Table 4. In contrast, the P-value is the probability value that is determined from F-distribution curve. With a known degree of freedom of a factor and a residual for given F-statistic, the P-value of that factor can be determined. The red F-value value in the table implies that the factor has the highest level of significance to the output response. From the ANOVA table, the level of significance is the fracture width and the oil production rate after hydraulic fracturing. To determine the group features, a statistical analysis of the key parameters was performed to draw box plots of the mean, maximum, median, quartile and minimum values for each parameters (fig. 3). First, we analyzed the results for all parameters. The graph show that the productivity increases with increasing the oil production rate after fracking and the fracture width, and the group B had the largest amount; therefore its production is expected to be large. The others parameters were similar in the groups A and B. These results revealed that hydraulic fracturing increased the oil production volume for fracture width has large amount of injected proppant and fluids per unit length. Although group B contained wells with higher productivity under the influence of hydraulic fracturing design parameters. Table 1 Geological and technological parameters of wells № Qo_post-frac, t/d Lf, m Wf, mm Hf, m h, mm Pb, Mpa Ip, m3/d∙MPa mp, t qp, Kg/t Vf Qf, t/d Wc, % Qo_pre-frac, t/d 256 0.3 117.5 3 10.3 8.4 3.9 0.9 20 10.2 93 1.3 32.2 0.8 9044 1.6 251.6 2.8 5 4 7.5 0.7 23 10.5 116 2.8 2.3 2.5 16 2.7 153.5 1.8 5.4 3.4 5.3 0.5 26 10.6 111 0.3 22.9 0.2 112 3.7 287.2 2.8 4.7 3.2 7.5 4.0 25 11.3 123 16.0 90.2 1.4 510 4.1 163.5 3 4.9 5 5.3 0.5 26 10.6 119 2.9 11.2 2.3 29 4.9 219.5 2.5 5 4.2 4.2 0.6 29 10.6 132 1.9 41.9 1.0 452 5.5 248.7 2.4 5.5 3.8 5.3 0.2 24 9.7 104 1.0 33.0 0.5 483 5.6 152.9 3 4.4 3.2 5.3 0.4 27 8.7 111 0.5 20.4 0.3 471 5.6 175.4 2.5 4.9 3.8 5.0 1.1 29 10.5 111 1.8 20.5 1.3 515 5.7 292.9 3.9 4.9 4 5.3 0.6 30 9.4 117 0.9 11.3 0.7 484 5.8 132.2 2 4.5 3.8 5.3 1.4 29 11.7 152 1.3 10.5 1.2 73 6.1 149.2 2.6 4 3 5.3 5.0 29 9.5 118 3.0 36.0 1.7 165 6.2 246.8 2.6 4.9 3.8 5.3 1.6 25 9.1 101 4.0 48.0 1.7 503 6.6 273.0 3.5 4.5 4.4 5.3 0.5 32 9.7 133 2.4 25.7 1.6 73 6.7 213.0 2.7 10.5 2.6 7.52 4.4 26 9.8 118 3.7 36.0 2.0 29 7.0 213.4 4.2 5.9 2.6 7.5 0.6 20 11.0 129 1.7 32.6 1.0 522 8.2 160.9 4.4 10.3 3.8 7.52 0.1 26 9.8 123 0.6 19.0 0.4 484 8.3 111.1 5.3 0.5 4.4 5.3 1.4 34 10.8 139 1.9 10.5 1.7 451 8.6 170.7 4.2 5 4 4.5 1.9 31 8.5 120 5.2 22.7 3.6 50 8.8 112.8 3.8 4.5 4.2 6.3 0.9 25 9.8 109 4.1 22.2 2.9 16 11.3 193.4 2.5 6.6 3.4 7.52 0.5 25 12.0 135 0.8 23.8 0.6 Table 2 Determining the information content of the “fracture length” attribute № Intervals of fracture length Shooting frequency Probability % Average probability % Average probability ratio Diagnosis coefficient Information amount A B yA yB / Dc IA 1 111-131 1 2 9.1 20.0 8.2 12.00 0.68 -1.66 3.18 2 131-151 1 1 9.1 10.0 11.8 12.00 0.98 -0.07 0.01 3 151-171 3 2 27.3 20.0 15.5 13.00 1.19 0.75 0.92 4 171-191 1 0 9.1 0.0 10.9 9.00 1.21 0.84 0.80 5 191-211 0 1 0.0 10.0 7.3 11.00 0.66 -1.80 3.35 6 211-231 1 2 9.1 20.0 7.3 10.00 0.73 -1.38 1.89 7 231-251 1 1 9.1 10.0 8.2 9.00 0.91 -0.41 0.17 8 251-271 1 0 9.1 0.0 9.1 6.00 1.52 1.80 2.79 9 271-291 1 1 9.1 10.0 8.2 5.00 1.64 2.14 3.40 10 more 291 1 0 9.1 0.0 6.4 2.00 3.18 5.03 10.97 - 11 10 100 100 92.72 89.00 12.70 5.23 27.46 Table 3 Parameters ranking of information amount theory Parameters IA Rank Hf, m 2,041 12 mp, t 5,923 11 h, mm 14,914 10 qp, Kg/t 17,252 9 Wc, % 18,271 8 Pb, MPa 25,515 7 Lf, m 27,464 6 Ip, m3/day∙MPa 33,188 5 Vf 44,093 4 Wf, mm 49,398 3 Qo_pre-frac, t/d 62,653 2 Qf, t/d 62,738 1 Fig. 1. Information amount comparison of different parameters Fig. 2. Relationship between the results from first model calculated and actual values oil production rate post-frac for wells of the Kashirsky and Podolsky carbonate deposits of Perm region fields a b Fig. 3. Variable distribution of the groups A and B based on keys factors: (a) the Qo_post-frac and (b) the Wf Table 4 Parameters ranking of information amount theory Variables Mean A Mean B t-value df p Valid N A Valid N B Std.Dev. A Std.Dev. B F-ratio p Qo_post-frac, t/d 4.128 7.782 -4.774 19 0.0001 11 10 1.874 1.605 1.363 0.652 Lf, m 199.536 184.430 0.590 19 0.5624 11 10 62.744 53.709 1.365 0.651 Wf, mm 2.700 3.580 -2.587 19 0.0181 11 10 0.566 0.961 2.888 0.114 Hf, m 5.409 5.670 -0.252 19 0.8035 11 10 1.655 2.962 3.204 0.084 h, mm 4.255 3.620 1.248 19 0.2271 11 10 1.464 0.689 4.514 0.033 Pb, Mpa 5.445 6.206 -1.495 19 0.1514 11 10 1.127 1.204 1.142 0.833 Ip, m3/d∙Mpa 0.967 1.668 -1.153 19 0.2634 11 10 1.053 1.690 2.573 0.157 mp, T 26.182 27.300 -0.706 19 0.4888 11 10 3.060 4.165 1.852 0.351 qp, Kg/T 10.347 10.012 0.825 19 0.4198 11 10 0.844 1.017 1.453 0.567 Vf 117.218 122.520 -0.883 19 0.3884 11 10 15.301 11.778 1.688 0.444 Qf, t/d 2.794 2.744 0.033 19 0.9737 11 10 4.467 1.513 8.713 0.003 Wc, % 26.949 27.660 -0.086 19 0.9322 11 10 23.997 10.640 5.086 0.022 Qo_pre-frac, t/d 1.108 1.712 -1.609 19 0.1242 11 10 0.744 0.971 1.706 0.417 Fig. 4. Relationship between the results from second model calculated (qC21-2) and actual (q0) values oil production rate post-frac The regression equation in the group A (qClС21) and B (qClС22) are obtained after simulation in statistical software, in which the dependent variable is the calculated rate of the oil production post-frac in the second model (qC21-2), and the independent variables are the sampling factors for which the level of statistical significance p < 0,05. The regression equations of the group A and B are shown in the Eq. (5) and Eq. (6). qClС21 = -9,156 + 0,508 mp (5) qClС22 = 33,841 - 0,26 Wc - 1,552 Wf - 0,344 mp - 0,634 Pb. (6) Relationship between the results from second model calculated (qC21-2) and actual (q0) values oil production rate post-frac for wells of the Kashirsky and Podolsky carbonate deposits of Perm region fields shown in Fig. 4. The absolute deviation of the second model calculated values of the oil production rate after hydraulic fracturing from its values in the field regress from 1,287 to 0,662 compared in the first model calculated values. The relative deviation from 4.1 % in first model to 2.4 % in the second model calculated values. q0 = -0.7828 + 0.1933qC1 + 1.0198qC21-2 + 0.0662qC1∙qC1 - - 0.1389qC1∙qC21-2 + 0.0559qC21-2 - qC21-2 (7) Conclusions Hydraulic fracturing increases the production of hydrocarbons from oil reservoirs and reduces oil production time. In order to optimize hydraulic fracturing at wells, it is necessary to identify the most important factors and with proper planning we will obtain the maximum increase in oil production. In this study, we used information amount theory and identified the main factors influencing the results of hydraulic fracturing in the Perm region. The main factors for the study area were: well productivity index before hydraulic fracturing, well production rate before hydraulic fracturing, fracture geometric parameters. For operational prediction of hydraulic fracturing, we left 4 factors and showed that the model has sufficient accuracy. As a result of this study, a new model was obtained that makes it possible to estimate the production rate of wells after hydraulic fracturing in the study area with minimal error. Nomenclature: Lf - fracture length Wf - fracture width Hf - Propant Height h - Net pay Pb - bubble pressure Ip - pre-frac productivity index mp - Proppant Total qp - Specific polymer consumption for placement of 1 ton of proppant Vf - Main Frac fluid volume Qf - pre-frac fluid production rate Wc - pre-frac water cut Qo_pre-frac - pre-frac oil production rate qC1 - oil production rate after hydraulic fracturing q0 - actual oil production rate

Об авторах

В. В. Поплыгин

Пермский национальный исследовательский политехнический университет

А. Диенг

Пермский национальный исследовательский политехнический университет

Ксиан Ши

Китайский нефтяной университет

Список литературы

  1. Marongiu-Porcu, M. Economic and Physical Optimization of Hydraulic Fracturing / M. Marongiu-Porcu, M.J. Economides, S.A. Holditch // Journal of Natural Gas Science and Engineering. - 2013. - Vol. 14. - P. 91-107. doi: 10.1016/j.jngse.2013.06.001
  2. Experimental study on hydraulic fracture propagation behavior of horizontal well on multilayered rock / X. Kong, X. Shi, Q. Gao, H. Xu, X. Ge, H.B. Cui // Geomechanics and Geophysics for Geo-Energy and Geo-Resources. - 2023. - Vol. 9 (1). DOI: 1007/s40948-023-00601-8
  3. Factors affecting productivity of fractured horizontal wells / T. Li, D. Guo, T. Zhihao, K. Xijun // Lecture notes in electrical engineering. - 2013. - P. 175-180. doi: 10.1007/978-3-642-28807-4_24
  4. Experimental study of hydraulic fractures in carbonate rocks under triaxial loading / V.V. Poplygin, S. Galkin, I.V. Savitckii, D.V. Potekhin // Eurasian Mining. - 2023. - No. 2. - P. 28-31. doi: 10.17580/em.2023.02.06
  5. Sarmadi, N. Phase-field modelling of fluid driven fracture propagation in poroelastic materials considering the impact of inertial flow within the fractures / N. Sarmadi, M.M. Nezhad // International Journal of Rock Mechanics and Mining Sciences. - 2023. - Vol. 169. - P. 105444. doi: 10.1016/j.ijrmms.2023.105444
  6. Quantitative experimental study on the rule of fluid flow and its influencing factors in hydraulic fractures / M. Li, J. Guo, T. Zhang, X. Zeng, R. Yang, H. Gou // Journal of Petroleum Science and Engineering. - 2022. - Vol. 214. - P. 110505. doi: 10.1016/j.petrol.2022.110505
  7. Establishment and application of propped hydraulic fracture conductivity theoretical model based on fracturing efficiency index / Z. Liu, H. Zhao, D. Wang, P. Yuan, Y. He // Gas Science and Engineering. - 2024. - Vol. 121. - P. 205199. doi: 10.1016/j.jgsce.2023.205199
  8. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea / Y. Yu, J. Liu, B. Li, Y. Sun // Journal of Natural Gas Science and Engineering. - 2022. - Vol. 101. - P. 104535. doi: 10.1016/j.jngse.2022.104535
  9. Investigation on the influences of gravel characteristics on the hydraulic fracture propagation in the conglomerate reservoirs / X. Liu, A. Zhang, Y. Tang, X. Wang, J. Xiong // Natural Gas Industry B. - 2022. - Vol. 9 (3). - P. 232-239. doi: 10.1016/j.ngib.2022.04.001
  10. Zhou, Y. Multiple hydraulic fractures growth from a highly deviated well: A XFEM study / Y. Zhou, D. Yang, M. Tang // Journal of Petroleum Science and Engineering. - 2022. - Vol. 208. - P. 109709. doi: 10.1016/j.petrol.2021.109709
  11. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates: An experimental investigation in absence of confining pressure / Y. Zhao, Y. Zhang, C. Wang, Q. Liu // Journal of Natural Gas Science and Engineering. - 2022. - Vol. 97. - P. 104343. doi: 10.1016/j.jngse.2021.104343
  12. Kar, S. Influence of flow and geomechanics boundary conditions on hydraulic fracturing pattern and evolution of permeability between the wells / S. Kar, A. Chaudhuri // Engineering Fracture Mechanics. - 2024. - 109949. doi: 10.1016/j.engfracmech.2024.109949
  13. Study on the interaction between hydraulic fracture and natural fracture under high stress / G. Qiu, X. Chang, J. Li, Y. Guo, Z. Zhou, L. Wang, Y. Wan, X. Wang // Theoretical and Applied Fracture Mechanics. - 2024. - Vol. 130. - 104259. doi: 10.1016/j.tafmec.2024.104259
  14. The hydraulic fracturing with multiple influencing factors in carbonate fracture-cavity reservoirs /j. Qiao, X. Tang, M. Hu, J.Rutqvist, Z. Liu // Computers and Geotechnics. - 2022. -Vol. 147. - P. 104773. doi: 10.1016/j.compgeo.2022.104773
  15. How does the heterogeneous interface influence hydraulic fracturing? / Q. Wang, H. Yu, W. Xu, H. Huang, F. Li, H. Wu // International Journal of Engineering Science. - 2024. - Vol. 195. - 104000. doi: 10.1016/j.ijengsci.2023.104000
  16. Laboratory hydraulic shearing of granitic fractures with surface roughness under stress states of EGS: Permeability changes and energy balance / T. Ishibashi, H. Asanuma, Y. Mukuhira, N. Watanabe // International Journal of Rock Mechanics and Mining Sciences. - 2023. - Vol. 170. - 105512. doi: 10.1016/j.ijrmms.2023.105512
  17. Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method / M. Wu, K. Gao, J. Li, Z. Song, X. Huang // International Journal of Solids and Structures. - 2022. - Vol. 234-235. - 111293. doi: 10.1016/j.ijsolstr.2021.111293
  18. Comparative study on hydraulic fracturing using different discrete fracture network modeling: Insight from homogeneous to heterogeneity reservoirs / M. Wu, C. Jiang, R. Song, J. Li, M. Li, B. Liu, D. Shi, Z. Zhu, B. Deng // Engineering Fracture Mechanics. - 2023. - Vol. 284. - 109274. doi: 10.1016/j.engfracmech.2023.109274
  19. A criterion for a hydraulic fracture crossing a natural fracture in toughness dominant regime and viscosity dominant regime / T. Liu, X. Wei, X. Liu, L. Liang, W. Xuancheng, J. Chen, H. Lei // Engineering Fracture Mechanics. - 2023. - Vol. 289. - 109421. doi: 10.1016/j.engfracmech.2023.109421
  20. Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well / Z. Qu, J. Wang, T. Guo, L. Shen, H. Liao, X. Liu, J.-C. Fan, H. Tong // Journal of Petroleum Science and Engineering. - 2021. - Vol. 204. - 108703. doi: 10.1016/j.petrol.2021.108703
  21. Influence factors of single well's productivity in the Bakken tight oil reservoir, Williston Basin / L. Tao, Y. Chang, X. Guo, L. Bao-Lei, J. Wu // Petroleum Exploration and Development. - 2013. - Vol. 40 (3). - P. 383-388. doi: 10.1016/s1876-3804(13)60047-6
  22. Галкин, В.И. Обоснование прогнозной величины прироста дебита нефти после применения гтм с помощью статистического методаю / В.И. Галкин, А.Н. Колтырин // Известия Томского политехнического университета. Инжиниринг георесурсов. - 2023. - Т. 334, № 2. - С. 81-86. doi: 10.18799/24131830/2023/2/3857
  23. Galkin, V.I. The dependence of the efficiency of hydraulic fracturing on the geological factors of the tourne-famene deposit at the Gagarinsky oilfield / V.I. Galkin, P.O. Chalova // IOP Conference Series: Earth and Environmental Science. - 2022. - Vol. 14. - P. 012007. doi: 10.1088/1755-1315/1021/1/012007
  24. Галкин, В.И. Исследование вероятностных моделей для прогнозирования эффективности технологии пропантного гидравлического разрыва пласта / В.И. Галкин, А.Н. Колтырин // Записки Горного института. - 2020. - Т. 246. - С. 650-659. doi: 10.31897/PMI.2020.6.7
  25. Новый подход к оценке результатов гидравлического разрыва пласта (на примере бобриковской залежи шершневского месторождения) / В.И. Галкин, И.Н. Пономарева, С.С. Черепанов, Е.В. Филиппов, Д.А. Мартюшев // Известия Томского политехнического университета. Инжиниринг георесурсов. - 2020. - Т. 331, № 4. - С. 107-114. doi: 10.18799/24131830/2020/4/2598
  26. Галкин, В.И. Вероятностная оценка влияния факторов на эффективность применения геолого-технических мероприятий / В.И. Галкин, А.Н. Колтырин // Булатовские чтения. - 2020. - Т. 2. - С. 110-119.
  27. Factors affecting productivity of stage fractured horizontal well / Tang Ruzhong, Wen Qingzhi, Su Jian [et al.] // Petroleum Drilling Techniques. - 2010. - Vol. 38(2). - P. 80-83. doi: 10.1080/10916466.2011.555338
  28. Machine-learning-based hydraulic fracturing flowback forecasting /j. Guo, W. Guo, L. Kang, X. Zhang, J. Gao, Yu. Liu, Ji. Liu, H. Yu // Journal of Energy Resources Technology, Transactions of the ASME. - 2023. - Т. 145, № 8. doi: 10.1115/1.4056993
  29. Burnaev, E.V. The influence of parameter initialization on the training time and accuracy of a nonlinear regression model / E.V. Burnaev, P.D. Erofeev //j.Commun. Technol. Electron. - 2016. - Vol. 61. - P. 646-660. doi: 10.1134/S106422691606005X
  30. Li, Ya. Multivariate nonlinear regression analysis of hydraulic fracturing parameters based on hybrid FEM-DEM / Ya. Li, T. Lan // Engineering Computations. - 2023. - Vol. 40, № 9/10. - P. 3075-3099. doi: 10.1108/EC-06-2023-0270
  31. Галкин, В.И. Анализ использования пошаговой регрессионной модели прогноза эффективности проппантного гидроразрыва пласта для терригенного объекта тл-бб / В.И. Галкин, А.С. Казанцев, А.Н. Колтырин // Нефтепромысловое дело. - 2018. - № 5. - С. 40-46. doi: 10.30713/0207-2351-2018-5-40-46
  32. Bunger, A.P. Parameters affecting the interaction among closely spaced hydraulic fractures / A.P. Bunger, X. Zhang, R.G. Jeffrey // Society of Petroleum Engineers Journal. - 2012. - Vol. 17. № 1. - P. 292-306. doi: 10.2118/140426-PA
  33. Data-driven model for hydraulic fracturing design optimization: focus on building digital database and production forecast / Anton D. Morozov, Dmitry O. Popkov, Victor M. Duplyakov, Renata F. Mutalova, Andrei A. Osiptsov, Albert L. Vainshtein, Evgeny V. Burnaev, Egor V. Shel, Grigory V. Paderin // Journal of Petroleum Science and Engineering. - 2020. - Vol. 194. - 107504. doi: 10.1016/j.petrol.2020.107504
  34. Mathematical modeling of hydraulic fracture formation and cleaning processes / N. Smirnov, E. Skryleva, D. Pestov, A. Shamina, A. Kiselev, K. Li, C. Qi // Energies. - 2022. - Vol. 15, № 6. - P. 1967. doi: 10.3390/en15061967
  35. Carpenter, Ch. Multiwell-pressure history matching in delaware play helps optimize fracturing / Ch. Carpenter // Journal of Petroleum Technology. - 2023. - Vol. 75, № 04. - P. 94-96. doi: 10.2118/0423-0094-JPT
  36. Poplygin, V.V. Well production after hydraulic fracturing in sandstone rocks in the north of the perm region / V.V. Poplygin // Eurasian Mining. - 2022. - № 2. - P. 37-39. doi: 10.17580/em.2022.02.09
  37. Effective permeability of fractured porous media with power-law distribution of fracture sizes / I.I. Bogdanov, V.V. Mourzenko, J.F. Thovert, P.M. Adler // Phys. Rev. E. - 2007. - Vol. 76 (36309). - P. 1-15. doi: 10.1103/PhysRevE.76.036309
  38. Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing / Chao Min, Guoquan Wen, Liangjie Gou, Xiaogang Li, Zhaozhong Yang // Energy. - 2023. - Vol. 285. - 129211. doi: 10.1016/j.energy.2023.129211
  39. Integrated optimum design of hydraulic fracturing for tight hydrocarbon-bearing reservoirs / H. Al-Attar, H. Alshadafan, M. Al Kaabi, A. Al Hassani, Sh. Al Mheiri // Journal of Petroleum Exploration and Production Technology. - 2020. - Vol. 10, № 8. - P. 3347-3361. doi: 10.1007/s13202-020-00990-6
  40. Garavand, A. Hydraulic fracture optimization by using a modified pseudo-3D model in multi-layered reservoirs / A. Garavand, V.M. Podgornov // J Nat Gas Geosci. - 2018. - Vol. 3(4). - P. 233-242. doi: 10.1016/j.jnggs.2018.08.004
  41. Nwabia, F.N. Inference of Hydraulically Fractured Reservoir Properties from Production Data Using the Indicator-Based Probability Perturbation Assisted History-Matching Method / F.N. Nwabia, J.Y. Leung, // Journal of Petroleum Science and Engineering. - 2021. - Vol. 198. - 108240. doi: 10.1016/j.petrol.2020.108240
  42. Hu, L.Y. History matching of object-based stochastic reservoir models / L.Y. Hu, S. Jenni // SPE J. - 2005. - Vol. 10 (3). - P. 312-323. doi: 10.2118/81503-PA
  43. Changes in rock permeability near-wellbore due to operational loads / V.V. Poplygin, E.P. Riabokon, M.S. Turbakov, E.V. Kozhevnikov, M.A. Guzev, H. Jing // Materials Physics and Mechanics. - 2022. - Vol. 48(2). - P. 175-183. doi: 10.18149/MPM.4822022_3
  44. Poplygin, V. Influence of Reservoir Properties on the Velocity of Water Movement from Injection to Production Well / V. Poplygin, I.S. Poplygina, V.A. Mordvinov // Energies. - 2022. - Vol. 15 (20). - P. 7797. doi: 10.3390/en15207797
  45. Poplygin, V. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing / V. Poplygin, E. Pavlovskaia // International Journal of Engineering. Transactions A: Basics. - 2021. - Vol. 34 (4). doi: 10.5829/ije.2021.34.04a.33

Статистика

Просмотры

Аннотация - 94

PDF (English) - 46

Ссылки

  • Ссылки не определены.

© Поплыгин В.В., Диенг А., Ши К., 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах