Исследование масштабного эффекта фильтрационно-емкостных свойств сложнопостроенного карбонатного резервуара

Аннотация


Одной из фундаментальных проблем при изучении свойств продуктивных нефтегазовых резервуаров является масштабный эффект. При анализе результатов разномасштабных исследований зачастую отмечается различие данных. Например, для одного интервала глубин свойства пористости и проницаемости, определенные для стандартных и полноразмерных образцов, могут значительно различаться. Так и при переходе на масштаб околоскважинной зоны данное различие проявляется более контрастно. В то же время сильное влияние на масштабный эффект оказывает тип коллектора. Если для порового коллектора проявление масштабного эффекта свойств может быть незначительно, то в сложнопостроенных коллекторах при переходе от одного масштаба к другому свойства могут изменяться на порядок ввиду наличия высокой неоднородности, обусловленной наличием вторичных преобразований, таких как выщелачивание, доломитизация, перекристаллизация. Пренебрежение масштабным эффектом может оказать негативное влияние на понимание строение резервуара.В рамках данного исследования проведено изучение масштабного эффекта свойств на примере сложнопостроенного карбонатного коллектора. Выполнена качественная оценка масштабного эффекта методами математической статистики и петротипизации. Для количественной оценки масштабного эффекта построена модель множественной регрессии, позволяющей скорректировать значения пористости от стандартных образцов керна к полноразмерным для построения куба пористости. Для прогноза значений проницаемости полноразмерных образцов использовалось несколько алгоритмов машинного обучения, среди которых градиентный бустинг, случайный лес, многослойный перцептрон и k-ближайших соседей. Установлено, что наиболее точной является модель на основе алгоритма случайного леса. Построенные модели с высокой достоверностью позволяют прогнозировать пористость и проницаемость при изменении масштаба (R2 = 0,77–0,94).

Полный текст

3

Об авторах

А. А Кочнев

Пермский национальный исследовательский политехнический университет

С. Н Кривощеков

Пермский национальный исследовательский политехнический университет

Н. Д Козырев

Пермский национальный исследовательский политехнический университет

О. Е Кочнева

Пермский национальный исследовательский политехнический университет

Е. С Ожгибесов

Пермский национальный исследовательский политехнический университет

Список литературы

  1. Nader, F.H. Multi-scale quantitative diagenesis and impacts on heterogeneity of carbonate reservoir rocks / F.H. Nader. – Springer International Publishing, 2017. – 132 p. doi: 10.1007/978-3-319-46445-9
  2. Kamensky, I.P. Scale effect in laboratory determination of the properties of complex carbonate reservoirs / I.P. Kamensky, S.H. AL-Obaidi, F.H. Khalaf // International Research Journal of Modernization in Engineering Technology and Science. – 2020. – No. 2 (11). – P. 1-6. doi: 10.31224/osf.io/9vr45
  3. Khassanov, D.I. Investigation of the scale effect and the concept of a representative volume element of rocks in relation to porosity / D.I. Khassanov, M.A. Lonshakov // Georesources. – 2020. – No. 22 (4). – P. 55–69. doi: 10.18599/grs.2020.4.55-69
  4. Slatt, R.M. Scaling geologic reservoir description to engineering needs / R.M. Slatt, G.L. Hopkins // Journal of Petroleum Technology. – 1990. – No. 42 (2). – P. 202–210. doi: 10.2118/18136-PA
  5. Wen, X. Upscaling hydraulic conductivities in heterogeneous media: An overview / X. Wen, J. Gómez-Hernández // Journal of Hydrology. – 1996. – No. 183. – P. 9–32. doi: 10.1016/S0022-1694(96)80030-8
  6. Christie, M.A. Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques / M.A. Christie, M.J. Blunt // SPE Res. Eval. & Eng. – 2001. – No. 4 (4). – P. 308–317. doi: 10.2118/72469-PA
  7. Krivoshchekov, S.N. Comparative analysis of filtration and capacity properties of terrigenic and carbonate reservoirs of the timano-pechora province for different-sized core / S.N. Krivoshchekov, E.S. Ozhgibesov // Master’s journal. – 2022. – No. 2. – P. 16–24.
  8. Lucia, F.J. Carbonate reservoir characterization / F.J. Lucia, C. Kerans, J.W. Jennings // Journal of petroleum technology. – 2003. – No. 55 (6). – P. 70–72. doi: 10.2118/82071-JPT
  9. Zhang, L. Aspects of rock permeability / L. Zhang // Frontiers of Structural and Civil Engineering. – 2013. – No. 7. – P. 102–116. doi: 10.1007/s11709-013-0201-2
  10. Ma, Y.Z. Multiscale heterogeneities in reservoir geology and petrophysical properties. In Quantitative geosciences: data analytics, geostatistics, reservoir characterization and modeling / Y.Z. Ma // Springer Nature Switzerland AG. – 2019. – P. 175–200. doi: 10.1007/978-3-030-17860-4_8
  11. Haldorsen, H.H. Simulator parameter assignment and the problem of scale in reservoir engineering / H.H. Haldorsen // Reservoir characterization. – 1986. – No. 6. – P. 293–340. doi: 10.1016/B978-0-12-434065-7.50016-2
  12. Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy / S. Krivoshchekov, A. Kochnev, N. Kozyrev, E. Ozhgibesov // Energies. – 2022. – No. 15. – P. 8866. doi: 10.3390/en15238866
  13. Peaceman, D.W. Fundamentals of numerical reservoir simulation / D.W. Peaceman. – Amsterdam, Netherlands: Elsevier, 2000. – 175 p.
  14. Idowu, N.A. Pore-Scale Modeling of Rate Effects in Waterflooding / N.A. Idowu, J.B. Martin // In Proceedings of the International Petroleum Technology Conference. – Kuala Lumpur, Malaysia, 2008. doi: 10.2523/IPTC-12292-MS
  15. Application of 3D static modeling for optimal reservoir characterization / A.O. Adelu, A.A. Aderemi, A.O. Akanji [et al.] // Journal of African Earth Sciences. – 2019. – No. 152. – P. 184–196. doi: 10.1016/j.jafrearsci.2019.02.014
  16. Permeability Upscaling for Carbonates From the Pore Scale by Use of Multiscale X-Ray-CT Images / K.A. Dehghan, J.Y. Arns, F. Hussain, Y. Cinar, W. Pinczewski, H. Arns // SPE Res. Eval. & Eng. – 2013. – No. 16. – P. 353–368. doi: 10.2118/152640-PA
  17. Permeability upscaling in complex carbonate samples using textures of micro-computed tomography images / M.S. Jouini, A. Al Sumaiti, M. Tembely, F. Hjouj, K. Rahimov // International Journal of Modelling and Simulation. – 2019. – No. 40 (4). – P. 245–259. doi: 10.1080/02286203.2019.1596728
  18. Gomes J.C. The design of an open-source carbonate reservoir model / J.C. Gomes, S. Geiger, D. Arnold // Petroleum Geoscience. – 2022. – No. 28 (3). – P. petgeo2021-067. doi: 10.1144/petgeo2021-067
  19. Refinement of the geological and hydro-dynamic model of a complex oil reservoir by means of a comprehensive data analysis / N.D. Kozyrev, A.A. Kochnev, A.G. Mengaliev, I.S. Putilov, S.N. Krivoshchekov // Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. – 2020. – No. 331 (10). – P. 164–177. doi: 10.18799/24131830/2020/10/2866
  20. Heterogeneity in the Petrophysical Properties of Carbonate Reservoirs in Tal Block / U. Farooq, J. Ahmed, S. Ali, F. Siddiqi, S.A.A. Kazmi, M. Kashif // In Proceedings of the SPWLA 60th Annual Logging Symposium. – Texas, USA, 2019. doi: 10.30632/T60ALS-2019_F
  21. Ali, M.T. A Model To Simulate Matrix-Acid Stimulation for Wells in Dolomite Reservoirs with Vugs and Natural Fractures / M.T. Ali, A.A. Ezzat, A.N. Hisham // SPE Journal. – 2020. – No. 25. – P. 609–631. doi: 10.2118/199341-PA
  22. Liu, Y. Multilevel strategies and geological parameterizations for history matching complex reservoir models / Y. Liu, L.J. Durlofsky // SPE Journal. – 2020. – No. 25 (01). – P. 81–104. doi: 10.2118/193895-PA
  23. Liu, Y. A Deep-Learning-Based Geological Parameterization for History Matching Complex Models / Y. Liu, W. Sun, L.J. Durlofsky // Math Geosci. – 2019. – No. 51. – P. 725–766. doi: 10.1007/s11004-019-09794-9
  24. Gaafar, G.R. Overview of Advancement in Core Analysis and Its Importance in Reservoir Characterisation for Maximising Recovery / G.R. Gaafar, R.D. Tewari, M.Z. Zahidah // In Proceedings of the Name SPE Asia Pacific Enhanced Oil Recovery Conference. – Kuala Lumpur, Malaysia, 2015. doi: 10.2118/174583-MS
  25. Bryant, F.B. Principles and practice of scaled difference chi-square testing / F.B. Bryant, A. Satorra // Struct. Equ. Model. – 2012. – no. 19 (3). – P. 372–398. doi: 10.1080/10705511.2012.687671
  26. Analysis of the representative elementary volume sandstones reservoir properties using the method of X-ray computed tomography in Ashalchinskoye oil field / T.R. Zakirov, A.A. Galeev, A.A. Konovalov, E.O. Statsenko // Oil industry. – 2015. – No. 10. – P. 54–57.
  27. On representative elementary volumes of grayscale micro‐CT images of porous media / A. Singh, K. Regenauer‐Lieb, S. Walsh, R.T. Armstrong, J. Griethuysen, P. Mostaghimi // Geophysical Research Letters. – 2020. – No. 47 (15). – P. e2020GL088594. doi: 10.1029/2020GL088594
  28. Study on Representative Volume Elements Considering In-homogeneity and Anisotropy of Rock Masses Characterised by Non-persistent Fractures / W. Ma, H. Chen, W. Zhang, C. Tan, Z. Nie, J. Wang, Q. Sun // Rock Mech. Rock Eng. – 2021. – No. 54. – P. 4617–4637. doi: 10.1007/s00603-021-02546-4
  29. Prilous, B.I. About introduction of concept of the representative volume element in the theory of the structured continuum / B.I. Prilous // In Proceedings of the IX Sci. Conf. GEO-Siberia-2013. – Novosibirsk, 2013.
  30. Bear, J. Dynamics of Fluids in Porous Media / J. Bear. – New York: American Elsevier Publishing Co., 1972. – 764 p.
  31. Gurbatova, I.P. Scale effect in determining reservoir properties in complex carbonate reservoirs / I.P. Gurbatova, N.G. Kostin // Oilfield Engineering. – 2010. – No. 5. – P. 21–25.
  32. Mikhaylov, N.N. Scale effect in laboratory determination of reservoir properties of complex carbonate reservoirs / N.N. Mikhaylov, I.P. Gurbatova // Oil and Gas Technologies. – 2011. – No. 4 (75). – P. 32–35. doi: 10.31224/osf.io/9vr45
  33. Sun, H. Rock properties evaluation for carbonate reservoir characterization with multi-scale digital rock images / H. Sun, H. Belhaj, G. Tao // Journal of Petroleum Science and Engineering. – 2019. – No. 175. – P. 654–664. doi: 10.1016/j.petrol.2018
  34. Upscaling approach for meso-scale heterogeneities in naturally fractured carbonate reservoirs / M.G. Correia, C. Maschio, D.J. Schiozer, M. Sebastiao // Journal of Petroleum Science and Engineering. – 2014. – No. 115. – P. 90–101. doi: 10.1016/j.petrol.2014.01.008
  35. Qi, D. Major challenges for reservoir upscaling / D. Qi, S. Zhang // Petroleum Science and Technology. – 2009. – No. 27 (17). – P. 1985–1992. doi: 10.1080/10916460802608818
  36. Comparison of Upscaling methods in a heterogeneous carbonate model / G.E. Pickup, P.W.M. Corbett, A. Kazemi, D.S. Shaikhina // In Proceedings of the 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. – Copenhagen, Denmark, 2012. doi: 10.3997/2214-4609-pdb.293.H009
  37. Rios, V.S. Upscaling technique for highly heterogeneous reservoirs based on flow and storage capacity and the lorenz coefficient / V.S. Rios, L.O.S. Santos, D.J. Schiozer // SPE Journal. – 2020. – No. 25 (4). – P. 1981–1999. doi: 10.2118/200484-PA
  38. Menezes, C. From Logs Scale to Reservoir Scale: Upscaling of the Petroelastic Model / C. Menezes, O. Gosselin // In Proceedings of the SPE Europec/EAGE Annual Conference and Exhibition. – Vienna, Austria, 2006. doi: 10.2118/100233-MS
  39. Upscaling of Flow Units for Reservoir Flow Incorporating Small-Scale Heterogeneities / D. Mikes, O.H.M. Barzandji, J. Bruining, C.R. Geel // In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition. – Jakarta, Indonesia, 2001. doi: 10.2118/68702-MS
  40. Upscaling relative permeability and capillary pressure from digital core analysis in Otway formation: Considering the order and size effects of facies / M. Aslannezhad, M. Sayyafzadeh, D. Tang, Z. You, S. Iglauer, A. Keshavarz // Gas Science and Engineering. – 2024. – No. 128. – P. 205363. doi: 10.1016/j.jgsce.2024.205363
  41. Ellabad, Y. Hydraulic Units approach conditioned by well testing for better permeability modeling in a North African Oil Field / Y. Ellabad, P.W.M. Corbett, R. Straub // In Proceedings of the 2001 International Symposium of the Society of Core Analysts. – Edinburgh, UK, 2001.
  42. Lazim, S.A. Permeability Estimation for Carbonate Reservoir (Case Study/South Iraqi Field) / S.A. Lazim, S.M. Hamd-Allah, A. Jawad // Iraqi J. Chem. Pet. Eng. – 2018. – No. 19. – P. 41–45. doi: 10.31699/IJCPE.2018.3.5
  43. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells / J.O. Amaefule, M. Altunbay, D. Tiab, D.G. Kersey, K.K. Dare // In Proceedings of the SPE Annual Technical Conference and Exhibition. – Houston, Texas, 1993. doi: 10.2118/26436-MS
  44. Ghanbarian, B. Insights Into Rock Typing: A Critical Study / B. Ghanbarian, L. Lake, M. Sahimi // SPE Journal. – 2018. – No. 24. – P. 230–242. doi: 10.2118/191366-PA
  45. Automatic Well Log Analysis Across Priobskoe Field Using Machine Learning Methods / B. Belozerov, N. Bukhanov, D. Egorov [et al.] // In Proceedings of the SPE Russian Petroleum Technology Conference. – Moscow, Russia, 2018. doi: 10.2118/191604-18RPTC-MS
  46. Jiang, L. Porosity prediction using machine learning / L. Jiang, J.P. Castagna, B. Russell // In Proceedings of the SEG International Exposition and Annual Meeting, Virtual, 11-16 October 2020. doi: 10.1190/segam2020-w13-04.1
  47. Wood, D.A. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data / D.A. Wood // Journal of Petroleum Science and Engineering. – 2020. – No. 184. – P. 106587. doi: 10.1016/j.petrol.2019.106587
  48. Abbas, M.A. Improving permeability prediction in carbonate reservoirs through gradient boosting hyperparameter tuning / M.A. Abbas, W.J. Al-Mudhafar, D.A. Wood // Earth Science Informatics. – 2023. – No. 16 (4). – P. 3417–3432. doi: 10.1007/s12145-023-01099-0
  49. Rahimi, M. Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield / M. Rahimi, M.A. Riahi // Journal of Applied Geophysics. – 2022. – No. 201. – P. 104640. doi: 10.1016/j.jappgeo.2022.104640
  50. A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran / E. Mohammadian, M. Kheirollahi, B. Liu, M. Sabet // Scientific Reports. – 2022. – No. 12. – P. 4505. doi: 10.1038/s41598-022-08575-5
  51. A Novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction / D.A. Otchere, T.O. Ganat, R. Gholami, M. Lawal // Journal of Natural Gas Science and Engineering. – 2021. – No. 91. – P. 103962. doi: 10.1016/j.jngse.2021.103962
  52. Vaferi, B. Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks / B. Vaferi, R. Eslamloueyan, S. Ayatollahi // Journal of Petroleum Science and Engineering. – 2011. – No. 77. – P. 254–262. doi: 10.1016/j.petrol.2011.03.002
  53. Okon, A.N. Artificial neural network model for reservoir petrophysical properties: porosity, permeability and water saturation prediction / A.N. Okon, S.E. Adewole, E.M. Uguma // Modeling Earth Systems and Environment. – 2021. – No. 7. – P. 2373–2390. doi: 10.1007/s40808-020-01012-4
  54. Gas-Bearing Reservoir Prediction Using k-nearest neighbor Based on Nonlinear Directional Dimension Reduction / Z.H. Song, W.J. Sang, S.Y. Yuan, S.X. Wang // Applied Geophysics. – 2024. – No. 21 (2). – P. 221–231. doi: 10.1007/s11770-022-0980-0

Статистика

Просмотры

Аннотация - 19

PDF (Russian) - 7

PDF (English) - 7

Ссылки

  • Ссылки не определены.

© Кочнев А.А., Кривощеков С.Н., Козырев Н.Д., Кочнева О.Е., Ожгибесов Е.С., 2025

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах