Mathematical modelling of stratified flow of polymer melts in an axisymmetric formulation


This study is about definition of rational geometry of the cable die, which effectively distributes polymer melt flows in channels; estimation of stability boundary flows of materials with different physical and rheological properties for the technological range of modes of processing; calculation and construction of the velocity fields, pressures, temperatures inside the channels of cable die; experimental determination of the dependence of the thickness of imposed layers of insulation and semiconducting materials from the linear velocity of pulling wires and expenses for each channel. In the modeling of the processes was used the cable die for joint overlay three layers of the polymer coating (layer semiconductive conductor screen, insulation, outer semiconductive screen) used in the production of modern electric cables of medium and high voltage. To analyze the processes of heat and mass in terms of stratified flows in channels of cable die real physical processes have been replaced by a mathematical model, which is a system of nonlinear differential equations, reflecting the basic conservation laws. The system was supplemented of boundary conditions and physical and rheological properties of the materials processed. In order to simplify the model offers a number of assumptions that allowed us, in particular, go to the axisymmetric formulation of the problem. To solve the formulated mathematical model the numerical method was applied, namely the finite element method, implemented through the Ansys set of software. Basing on the received results was made more effective geometry of the cable die, eliminating the effects of twist the polymer streams is developed; velocity, pressure and temperature distribution in the channels of the cable die were obtained; possible overheating of the material inside the channels is presented; the effect of certain parameters of overlay multilayer polymeric insulation process on layer thickness was assessed.

About the authors

M V Bachurina

Perm National Research Polytechnic University

29, Komsomolsky av., 614990, Perm, Russian Federation

A V Kazakov

Perm National Research Polytechnic University

29, Komsomolsky av., 614990, Perm, Russian Federation

N M Trufanova

Perm National Research Polytechnic University

29, Komsomolsky av., 614990, Perm, Russian Federation


  1. The Finite Element Simulation of Polymer Coextrusion Based on the Slip Boundary / M. Zhang, C. Huang, S. Sun, Y. Jia // Polymer-Plastics Technology and Engineering. - 2009. - No. 48. - P. 754-759.
  2. Visualisation and Analysis of LDPE Melt Flows in Coextrusion Geometry / M.T. Martyn, T. Gough, R. Spares, P.D. Coates, M. Zatloukal // SPE ANTEC. - 2002. - No. 60. - P. 937-941.
  3. Experimental Observations of LDPE Melt Flow in Coextrusion Geometries / M.T. Martyn, T. Gough, R. Spares, P.D. Coates, M. Zatloukal // SPE ANTEC. - 2004. - No. 62. - P. 205-209.
  4. Theoretical and experimental instabilities in coextrusion analysis of interfacial flows / M. Zatloukal, W. Kopytko, A. Lengalova, J. Vlcek // J. Appl. Polym. Sci. - 2005. - No. 98 (1). - P. 153-162.
  5. Martyn M.T., Coates P.D., Zatlouka M. Visualisation and Analysis of Polyethylene Coextrusion Melt Flow // AIP Conference Proceedings, 7/24/2009. - 2009. - Vol. 1152. - Iss. 1. - P. 96-109.
  6. Imaging and analysis of wave type interfacial instability in the coextrusion of low-density polyethylene melts / M.T. Martyn, R. Spares, P.D. Coates, M. Zatloukal // Journal of Non-Newtonian Fluid Mechanics. - 2009. - No. 156. - P. 150-164.
  7. Mitsoulis E., Heng F.L. Numerical simulation of coextrusion from a circular die // J. Appl. Polym. Sci. - 1987 - No. 34 (4). - P. 1713-1725.
  8. Раувендаль К. Экструзия полимеров - СПб.: Профессия, 2008. - 786 с.
  9. Khan A.A., Han C.D. Trans.Soc.Rheol. - 1976. - Vol. 20. - No. 4. - P. 595-621.
  10. Математическое моделирование соэкструзии длинномерных кольцевых изделий из резиновых смесей / П.П. Юрыгин [и др.] // Научно-технический вестник Поволжья. - 2013. - № 3. - С. 35-37.
  11. Yankov V.I., Trufanova N.M., Shcherbinin A.G. Nonisothermal flow of polymer solutions and melts in channels of constant cross section // Theoretical Foundations of Chemical Engineering. - 2004. - Vol. 38. - No. 2. - P. 179-188.
  12. Zhao R., Macosko W. Slip at molten polymer-polymer interfaces // MRS Symp. - 2000. - P. 629.
  13. Казаков А.В., Савченко В.Г., Труфанова Н.М. Расчет влияния геометрии каналов технологического инструмента кабельной головки на возникновение вихревых потоков при наложении изоляции // Кабели и провода. - 2010. - № 2 (321). - С. 11-13.
  14. Tanner R.I. Some Experiences Using Finite Element Methods in Polymer Processing and Rheology // Proceedings of the Seventh International Congress on Rheology. - Gothenburg, Sweden, 1975. - P. 140.
  15. Казаков А.В., Савченко В.Г., Труфанова Н.М. Моделирование процессов тепломассопереноса полимера в головке экструдера с учетом и без учета зависимости вязкости от температуры // Интеллектуальные системы в производстве. - 2010. - № 1. - С. 130-134.
  16. Казаков А.В., Труфанова Н.М. Численные исследования режимов стратифицированного течения и методика управления процессом экструзионного наложения многослойной изоляции // Известия Том. политехн. ун-та. - 2012. - Т. 320, № 4. - С. 167-171.
  17. Kazakov A.V., Trufanova N.M. A system for adaptive monitoring of the process of polymer insulation production // Russian Electrical Engineering. - 2012. - Vol. 83. - Iss. 11. - P. 640-643.



Abstract - 24

PDF (Russian) - 23



Copyright (c) 2014 Bachurina M.V., Kazakov A.V., Trufanova N.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies