MODEL' FORMIROVANIYa OTKOLA
- Authors: Savelieva N.V.1, Bayandin Y.V.2, Naimark O.B.2
- Affiliations:
- Perm National Research Polytechnic University
- ICMM UB RAS
- Issue: No 3 (2013)
- Pages: 210-221
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/330
- DOI: https://doi.org/10.15593/perm.mech/2013.3.210-221
- Cite item
Abstract
Full Text
Введение Целью исследования реакции материалов на высокоскоростное нагружение является изучение основных механизмов деформирования и формулировка определяющих соотношений, которые позволяют адекватно описывать поведение при интенсивных воздействиях. Базовыми применительно к широкому спектру материалов являются плосковолновые эксперименты по ударному сжатию (соударение двух пластин) [1–4]. В ходе эксперимента в пластинах генерируется ударная волна (волна сжатия), при достижении свободной поверхности она отражается и переходит в волну растяжения. В области наиболее интенсивных растягивающих напряжений, возникающих в результате взаимодействия встречных волн разрежения, реализуется многомасштабная кинетика роста дефектов, нарушается сплошность материала, что приводит к явлению откола. Закономерности формирования ударно-волнового фронта и кинетики разрушения в процессе нагружения регистрируются при измерении профиля скорости свободной поверхности с помощью системы VISAR. Современные возможности программных комплексов и пакетов прикладных программ позволяют реализовать вычислительный эксперимент с учетом особенностей поведения материала в широком интервале скоростей нагружения, что обеспечивает верификацию моделей и прогнозирование поведения материала в реальных условиях. Ударно-волновое нагружение характеризуется большими амплитудами, малыми временами воздействия и интенсивной кинетикой роста на масштабах нарастания волнового фронта. Это приводит к резкой локализации деформации и поврежденности в достаточно узкой области за малый промежуток времени. Механические свойства и особенности разрушения материалов при ударно-волновом воздействии существенно отличаются от наблюдаемых при квазистатическом нагружении, что объясняется близостью характерных времен механической и структурной релаксации, обусловленной нелинейной многомасштабной кинетикой развития дефектов [1, 5–7]. В работе построена математическая модель поведения твердого тела, позволяющая реализовать описание отклика материала на ударно-волновое нагружение на различных масштабных уровнях на основе введения переменных, отражающих эволюцию дефектной структуры материала и имеющих тензорный характер. Описание активационных механизмов, соответствующих различным скоростям нагружения, также играет ключевую роль при моделировании. Исследование ограничивается поведением металлов под действием умеренных нагрузок (≤10 ГПа). 1. Статистико-термодинамический подход В работе при моделировании были использованы результаты статистико-термодинамического подхода и развитая на его основе структурно-феноменологическая модель [8], учитывающая кинетику роста мезоскопических дефектов (микротрещин и микросдвигов) и влияние последней на релаксационные свойства и развитие разрушения. Термодинамическое состояние системы описывается с помощью термодинамического потенциала (свободной энергии Гельмгольца), который зависит от переменных, характеризующих дефектную структуру материала: тензора плотности дефектов (деформации, обусловленной дефектами) и параметра структурного скейлинга. Нелинейная кинетика развития дефектов описывается системой эволюционных уравнений для введенных структурных переменных, что позволяет объяснить различные стадии дисперсного накопления мезоскопических дефектов (поврежденности), локализацию разрушения, влияние на релаксационные свойства. 2. Математическая модель Рассматривается задача соударения двух пластин в приближении плоского удара [9]. Система дифференциальных уравнений включает уравнение движения (1); уравнение неразрывности (2); условие аддитивности упругой, пластической и структурной деформации (3) (в предположении малости деформации); представления тензоров напряжений и деформации, обусловленной дефектами, как суммы шаровой (индекс s) и девиаторной (индекс d) частей (соотношения (4) и (5)); закон Гука в скоростной форме (6); кинетические уравнения для введенных структурных переменных (7)–(9) (записанных с учетом условий Онзагера (10): (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) где – напряжение; и – его шаровая и девиаторная составляющие соответственно; – перемещение; – плотность; – скорость; – полная деформация; – упругая деформация; – деформация обусловленная дефектами; и его шаровая (объемная плотность дефектов) и девиаторная части; – пластическая деформация; – первый инвариант скорости упругой деформации; и – первый и второй параметры Ламе; – свободная энергия Гельмгольца (термодинамический потенциал); – параметр структурного скейлинга; – кинетические коэффициенты, которые в общем виде могут зависеть от всех термодинамических параметров. Разбиение тензоров напряжения и деформации, обусловленной дефектами, на шаровую и девиаторную части позволяет учесть вклад каждой из составляющих в процесс деформирования. Откольное разрушение формируется при интенсивных растягивающих напряжениях, которые генерируют образование дефектов преимущественно объемного типа. Эта гипотеза позволяет сформулировать критерий в рамках разработанной модели. Ранее в работе [10] был приведен вид аппроксимации свободной энергии и получены кинетические уравнения для шаровой и девиаторной частей тензора плотности дефектов. Показано, что кинетика роста дефектов приобретает лавинообразный характер (режим с обострением) по достижении критического значения объемной плотности дефектов, что является предвестником формирования очага макроскопического разрушения. После преобразования и введения безразмерных переменных соотношения (1) – (10) принимают вид (11) Обезразмеривание проводилось согласно соотношениям (12) где – продольный модуль упругости, равный – объемный модуль упругости; – продольная скорость звука; – толщина образца; – начальная плотность; – коэффициент Пуассона. Кинетические параметры имеют вид [9] где связаны с коэффициентами . Система уравнений (11) была решена численно в пакете прикладных программ MatLab. В основе алгоритма, реализующего решение дифференциального уравнения параболического типа, лежат метод конечных разностей и многошаговый метод интегрирования по времени с автоматическим выбором шага. Для определения параметров модели в работе [11] была разработана процедура идентификации, которая основана на решении задачи минимизации невязки численных и экспериментальных данных при динамическом нагружении. 3. Результаты В результате решения системы уравнений (11) были построены профили скорости свободной поверхности для ванадия для различной величины прикладываемого нагружения (рис. 1), параметры модели были найдены в работе [9]. В результате расчетов было показано, что модель описывает характерные для данного типа нагружения профили. На рисунке можно четко проследить формирование упругого предвестника и пластического фронта, формирование откольного импульса и реверберацию волн в откольной пластине. Рис. 1. Профили скорости свободной поверхности для ванадия для различной величины прикладываемого напряжения (6–16 ГПа) Расчеты показали, что в исследуемом диапазоне давлений амплитуда упругого предвестника остается постоянной. При этом откольная прочность, которая определяется как разность между амплитудой пластического фронта и минимумом скорости в откольном импульсе, при изменении скорости меняется (рис. 2). Рост откольной прочности при увеличении внешних напряжений имеет двухстадийный характер. Рис. 2. Зависимость откольной прочности от величины прикладываемого напряжения Рис. 3. Профиль скорости свободной поверхности для ванадия: красная линия – эксперимент, зеленая – численный расчет На рис. 3 показано сравнение численного расчета и экспериментальных данных. В опыте на ударно-волновое нагружение ванадия [12] откольный импульс не регистрировался, поэтому проводилось сравнение только ударно-волнового фронта. Соответствие можно признать удовлетворительным. 4. Обсуждение результатов Результат представленных расчетов свидетельствует об удовлетворительном описании исследуемого процесса разрабатываемой моделью. Профиль скорости свободной поверхности соответствует типичному для данного типа нагружения. Построенные профили на рис. 1 выявили слабую зависимость величины предела упругости Гюгонио от скорости нагружения. Такая реакция материала (в данном случае ванадия) наблюдается в широком интервале скоростей нагружения. В рамках построенной модели это можно связать с близостью между характерным временем нагружения и временем ориентационного перехода, который определяется скачком деформации, обусловленной дефектами в конечном интервале напряжений. При слабой зависимости величины упругого предвестника от скорости нагружения этот интервал имеет малую ширину.About the authors
Natalia Vladimirovna Savelieva
Perm National Research Polytechnic University
Email: saveleva@icmm.ru
1, Akademic Korolev st., 614013, Perm postgraduate student, Department of Mathematical Modeling of Systems and Processes, of Perm National Research Polytechnic University
Yuriy Vitalievich Bayandin
ICMM UB RAS
Email: buv@icmm.ru
1, Akademic Korolev st., 614013, Russian Federation, Perm Ph.D. in Physical and Mathematical Sciences, scientist ICMM UB RAS
Oleg Borisovich Naimark
ICMM UB RAS
Email: naimark@icmm.ru
1, Akademic Korolev st., 614013, Russian Federation, Perm Doctor of Physical and Mathematical Sciences, Professor, laboratory’s head of ICMM UB RAS
References
- Ударно-волновые явления в конденсированных средах / Г.И. Каннель, С.В. Разоренов, Л.В. Уткин, В.Е. Фортов. – М.: Янус-К, 1996. – 408 с.
- Гаркушин Г.В., Канель Г.И., Разоренов С.В. Сопротивление деформированию и разрушению алюминия AD1 в условиях ударно-волнового нагружения при температурах 20 и 600°С // Физика твердого тела. – 2010. – Вып. 11. – Т. 52. – С. 2216–2222.
- О механизмах микромакроэнергообмена при ударном нагружении твердых тел / Ю.И. Мещеряков, А.К. Диваков, Н.И. Жигачева, И.П. Макаревич, С.Ю. Мушникова, Г.Ю. Калинин // Письма в ЖТФ. – 2010. – Вып. 11. – Т. 36. – С. 54–60.
- Влияние предварительного деформационного упрочнения на напряжение течения при ударном сжатии титана и титанового сплава / С.В. Разоренов, А.С. Савиных, Е.Б. Зарецкий, Г.И. Канель, Ю.Р. Колобов // Физика твердого тела. – 2005. – Вып. 4. – Т. 47. – С. 639–645.
- Bo Ren, Shaofan Li, Jing Qian, Xiaowei Zeng. Meshfree simulation of spall fracture // Computer method in applied mechanics and engineering. – 2011. – Vol. 200. – P. 797–811.
- Danian Chen, S.T.S. Al-Hassani, M.Sarumi, Xiaogang Jin. Crack straining-based spall model // International Journal of Impact Engineering. – 1997. – Vol. 19. – No. 2. – P. 107–116.
- A modified Cochran-Banner spall model / Chen Danian, Yu Yuying, Yin Zhihua, Wang Huanran, Liu Guoqing, Xie Shugang // International Journal of Impact Engineering. – 2005. – Vol. 31. – P. 1106–1118.
- Наймарк О.Б. Коллективные свойства ансамблей дефектов и некоторые нелинейные проблемы пластичности и разрушения // Физ. мезомех. – 2003. – Т. 6, № 4. – С. 45–72.
- Савельева Н.В., Баяндин Ю.В., Наймарк О.Б. Численное моделирование деформирования и разрушения металлов в условиях плоского удара // Вычисл. мех. сплош. сред. – 2012. – Т. 5, № 3. – С. 300–307.
- Баяндин Ю.В. Исследование автомодельных закономерностей формирования пластических фронтов в металлах при интенсивных воздействиях: дис.. канд. физ.-мат. наук. – Пермь. 2007. – 119 с.
- Баяндин Ю.В., Наймарк О.Б., Уваров С.В. Структурно-скейлинговые переходы при динамических и ударно-волновых нагрузках в твердых телах // Физика экстремальных состояний вещества – 2008. – Черноголовка, 2008. – С. 122–124.
- Tonks D.L. The DataShop: а Database of Weak-Shock Constitutive Data. – LosAlamos, New Mexico, 1991. – 135 p