No 3 (2013)

AVTOMODEL'NYE LOKALIZOVANNYE KONVEKTIVNYE STRUKTURY
Aristov S.N., Knyazev D.V.

Abstract

Рассмотрена задача о конвективном течении в слое вязкой жидкости, вызываемом ее локальным нагревом. Поиск решения задачи осуществлялся в рамках класса точных решений уравнений термогравитационной конвекции, обобщающего известный класс решений уравнений Навье-Стокса, к которому относятся вихри Бюргерса и Салливана. Для единичного числа Прандтля найдены два семейства автомодельных решений задачи, позволившие описать эволюцию двух различных типов радиально-локализованных вихрей. В обоих случаях радиальная компонента скорости на большом расстоянии от оси симметрии вихрей убывает обратно пропорционально радиусу, в то время как вертикальная составляющая скорости и температура в первом случае затухают как квадрат расстояния от оси, а во втором – экспоненциально. Для азимутальной скорости получено отдельное линейное уравнение с коэффициентами, зависящими от функции тока меридионального течения. В силу автомодельности это уравнение допускает частные решения с разделяющимися переменными, суперпозиция которых дает возможность описать перенос момента импульса (циркуляции, если она отлична от нуля) от бесконечности к центру вихря, а также проследить эволюцию произвольного локализованного начального возмущения азимутальной скорости. Под действием вихревой и тепловой диффузии рассмотренные вихревые образования затухают со временем. Полученные точные решения являются простыми, обозримыми моделями локализованных конвективных вихрей и ранее известны не были.
PNRPU Mechanics Bulletin. 2013;(3):5-15
views
O reshenii zadachi ravnovesiya myagkoy setchatoy obolochki pri nalichii nagruzki, sosredotochennoy v tochke
Badriev I.B., Banderov V.V., Zadvornov O.A.

Abstract

Рассматривается пространственная задача о равновесном состоянии мягкой сетчатой оболочки при наличии внешней точечной нагрузки, сосредоточенной в некоторой точке. Под сетчатой понимается оболочка, силовой основой которой является сетка, образованная двумя семействами взаимно перекрещивающихся, абсолютно гибких, упругих нитей. Предполагается, что функции, описывающие физические соотношения в нитях, являются непрерывными, неубывающими и имеют линейный рост на бесконечности. Обобщенная задача сформулирована в виде операторного уравнения в пространстве Соболева. Доказано, что множество решений обобщенной задачи не пусто, выпукло и замкнуто. Построены конечномерные аппроксимации задачи, исследована их сходимость. Для решения задачи использован двухслойный итерационный метод. Данный метод был реализован численно. Проведенные для модельных задач численные эксперименты подтвердили эффективность итерационного метода.
PNRPU Mechanics Bulletin. 2013;(3):16-34
views
MATEMATIChESKOE MODELIROVANIE USTANOVIVShEYSYa FIL'TRATsII S MNOGOZNAChNYM ZAKONOM
Badriev I.B., Nechaeva L.A.

Abstract

Рассматривается установившийся процесс фильтрации несжимаемой высоковязкой жидкости, следующей многозначному закону фильтрации. Обобщенная постановка данной задачи формулируется в виде смешанного вариационного неравенства с монотонным оператором и сепарабельным, вообще говоря, недифференцируемым функционалом в гильбертовом пространстве. К данной задаче сводится задача об определении границ предельно равновесных целиков остаточной вязкопластической нефти. Установлены свойства оператора, входящего в это неравенство (обратная сильная монотонность, коэрцитивность), а также свойства функционала (липшиц-непрерывность и выпуклость). Это дало возможность применить для доказательства теоремы существования известные результаты теории монотонных операторов. Для решения вариационного неравенства предложен итерационный метод, не требующий обращения исходного оператора. Каждый шаг итерационного процесса сводится фактически к решению краевых задач для оператора Лапласа. Исследование сходимости итерационного процесса удалось провести благодаря сведению его к методу последовательных приближений для отыскания неподвижной точки некоторого оператора (оператора перехода). Получена связь решения исходного вариационного неравенства с компонентами неподвижной точки этого оператора перехода. Доказано, что оператор перехода является нерастягивающим, сверх того, получено неравенство, более сильное, чем неравенство нерастягиваемости. Установлено также, что оператор перехода является асимптотически регулярным. Это и позволило доказать слабую сходимость последовательных приближений. Проведено исследование сходимости итерационного процесса. Метод был реализован численно. Проведенные для модельных задач численные эксперименты подтвердили эффективность итерационного метода. Следует отметить, что предложенные методы позволяют находить приближенные значения не только самого решения, но и его характеристик, для задач фильтрации – это приближенные значения градиента решения, а также приближенные значения скоростей фильтрации на множествах, соответствующих точкам многозначности в законе фильтрации, что весьма полезно с практической точки зрения.
PNRPU Mechanics Bulletin. 2013;(3):35-62
views
Metody vychisleniy matrits perenosa uprugikh deformatsiy
Belyayev Y.N.

Abstract

Дан обзор матричных методов описания распространения волн в слоистых средах. Развивается метод представления матрицы переноса (характеристической матрицы) в виде матричного решения системы обыкновенных дифференциальных уравнений первого порядка. Эта система уравнений называется определяющей. Метод получения определяющей системы уравнений показан на примере термоупругих волн. Рассмотрены традиционные методы нахождения матричной экспоненты: разложение в ряд Тейлора, рациональные аппроксимации Чебышева и Паде, метод масштабирования, методы численного интегрирования дифференциальных уравнений, методы преобразования матриц (метод собственных векторов, QR-алгоритм, жорданова каноническая форма, преобразование Шура, приведение матрицы к блочно-диагональной форме), формулы Лагранжа-Сильвестра, Бэкера, Ньютона, преобразование Лапласа. Представлен метод симметрических многочленов. Симметрические многочлены n -го порядка, введенные автором, использованы для выражения целых функций матриц, в том числе матричной экспоненты. Этот метод не требует вычисления или оценки собственных значений матрицы. Алгоритм вычисления целых степеней матриц, основанный на использовании симметрических многочленов, является наименее затратным по числу элементарных умножений и, следовательно, наиболее точным в сравнении с другими известными методами. Представлены формулы, аналитически выражающие матрицы переноса упругих деформаций второго и четвертого порядка через элементарные симметрические многочлены определяющей матрицы. Дана аналитическая оценка величин модулей симметрических многочленов. Метод симметрических многочленов позволяет контролировать ошибки округления и усечения при вычислении матрицы переноса. Выполнена оценка масштабирующего коэффициента, обеспечивающего надежное вычисление матричной экспоненты с допустимой погрешностью. Вычисление матрицы переноса упругих волн в слоистых средах методом симметрических многочленов имеет преимущества в сравнении с другими подходами по сочетанию таких параметров, как общность, надежность, стабильность, точность, простота, легкость использования и эффективность численного алгоритма.
PNRPU Mechanics Bulletin. 2013;(3):63-110
views
POVYShENIE DOLGOVEChNOSTI TITANOVOGO DISKA KOMPRESSORA S POMOShch'Yu UPRAVLENIYa STRUKTUROY SPLAVA V PRIPOVERKhNOSTNOM SLOE
Burago N.G., Nikitin I.S.

Abstract

В статье исследуется усталостная долговечность структурно-неоднородного диска постоянной толщины при малоцикловых (МЦУ) и сверхмногоцикловых (СВМУ) нагрузках. Для этого решены две модельные задачи теории упругости о нагружении кольцевого диска. В первой задаче к диску приложена центробежная нагрузка, а на внешнем контуре переменное и периодическое по углу радиальное напряжение, моделирующее центробежную нагрузку от лопаток (МЦУ). Во второй задаче решается уравнение для изгиба диска под действием периодических по углу крутящих моментов на внешнем контуре. Циклически приложенные крутящие моменты моделируют влияние высокочастотных колебаний лопаток и соответствуют режиму сверхмногоцикловой усталости (СВМУ). Определена структура и глубина приповерхностного слоя с повышенными усталостными характеристиками, при которой достигается максимальная долговечность для каждого из режимов циклического нагружения. Определены суммарные радиальные и тангенциальные напряжения в ободной части диска при действии центробежных сил. Найдено распределение долговечности по радиусу в окрестности ободной части титанового диска (режим МЦУ) для однородной структуры и для неоднородной структуры. Построена зависимость логарифма долговечности от предела усталости в приповерхностном слое (режим МЦУ). Вычислены суммарные радиальные, тангенциальные и касательные напряжения в ободной части диска, соответствующие максимальному кручению лопаток по и против часовой стрелки (СВМУ). Определены распределение долговечности по радиусу в окрестности ободной части титанового диска и зависимость логарифма долговечности от предела усталости в приповерхностном слое (режим СВМУ).
PNRPU Mechanics Bulletin. 2013;(3):111-126
views
MATEMATIChESKOE MODELIROVANIE FAZOVYKh PREVRAShchENIY V STALYaKh PRI TERMOMEKhANIChESKOY NAGRUZKE
Isupova I.L., Trusov P.V.

Abstract

Статья посвящена описанию математической модели для анализа фазовых превращений в сталях при термомеханической нагрузке. При построении модели применяется многоуровневый подход, основанный на использовании в ее структуре внутренних переменных – параметров, характеризующих состояние и эволюцию мезои микроструктуры материала. Предлагаемая модель пригодна для описания как бездиффузионных (мартенситных) фазовых превращений, так и диффузионных превращений. При моделировании диффузионных фазовых превращений учитывается, что наряду с перестройкой кристаллической решетки может происходить перераспределение атомов углерода и легирующих элементов. Постановка общей задачи облегчена выделением отдельных подзадач, а именно – определения напряженно-деформированного состояния, температуры и описания перераспределения легирующих элементов, для которых можно сформулировать относительно независимые постановки. Для рассматриваемых подзадач предлагаются различные типы моделей. Так, для задачи определения напряженно-деформированного состояния используется прямая модель второго типа, а для задач теплопроводности и диффузии – прямая модель первого типа. При этом задача описания перераспределения атомов углерода и легирующих элементов рассматривается только на мезоуровне, так как именно на этом масштабе процессы диффузии значительны. В статье представлена общая структура двухуровневой модели. Для задачи определения напряженно-деформированного состояния, задач теплопроводности и диффузии приведены постановки на всех рассматриваемых масштабных уровнях. Особое внимание уделено формулировке кинетического уравнения для описания изменения объемных долей всех сосуществующих фаз.
PNRPU Mechanics Bulletin. 2013;(3):127-157
views
OBZOR MATEMATIChESKIKh MODELEY DLYa OPISANIYa FAZOVYKh PREVRAShchENIY V STALYaKh
Isupova I.L., Trusov P.V.

Abstract

В сталях наблюдаются все известные для твердого состояния фазовые превращения: полиморфное с широким спектром морфологических и кинетических особенностей; эвтектоидный распад (перлитное превращение); распад пересыщенных твердых растворов внедрения и замещения; упорядочение с изменением ближнего и дальнего порядка в аустените и мартенсите. Важная особенность данных систем заключается в резко различающейся диффузионной подвижности металлических атомов и углерода, поэтому при превращениях перестройка кристаллической решетки может происходить наряду с диффузионным перераспределением углерода и легирующих элементов. В представленной статье приводится обзор работ, посвященных математическому моделированию как бездиффузионных (мартенситных), так и диффузионных фазовых превращений, происходящих в сталях при термомеханической нагрузке. Можно выделить два основных подхода к построению моделей полиморфных превращений. Первый подход основан на явном введении в рассмотрение межфазных границ с учетом условий на границе фаз деформируемого материала и кинетики развития новой фазы. Второй подход связан с разработкой моделей, основанных на введении дополнительных параметров состояния, характеризующих те или иные особенности структуры материала «в среднем» (например, концентрация новой фазы), и формулировкой соотношений для них. Модели, применяемые для описания фазовых превращений, весьма разнообразны. В представленном обзоре приведены работы, в которых используются и многоуровневые, и самосогласованные, и прямые модели. Рассмотрены также работы, в которых модели основаны на градиентных теориях, что позволяет учесть влияние масштабных факторов на процессы фазовых превращений и поведение исследуемой стали.
PNRPU Mechanics Bulletin. 2013;(3):158-192
views
MATEMATIChESKAYa MODEL' KONVEKTsII NIKELEVOGO RASPLAVA PRI INDUKTsIONNOM PEREPLAVE. REShENIE MAGNITNOY PODZADAChI
Nikulin I.L., Perminov A.V.

Abstract

В настоящей работе для изучения основных закономерностей движения расплава металла в неоднородном переменном магнитном поле разработана математическая модель, в которой рассматривается заполненная парамагнитным проводящим расплавом цилиндрическая область, ось симметрии которой направлена вертикально. Модель включает в себя: уравнения, описывающие пространственное распределение магнитного поля индуктора, который представляет собой короткую катушку; уравнения для индукционных токов, возникающих в объеме металла при изменении магнитного поля индуктора; уравнение переноса тепловой энергии, учитывающее движение среды и действие объемных источников тепла; уравнения конвекции расплава в приближении Буссинеска с учетом силы Лоренца, действующей на расплав. На твердых боковой и нижней границах области выполняются условия прилипания, верхняя граница расплава считается свободной. Теплоотвод на боковой поверхности задается законом Ньютона–Рихмана. Тепловой поток на верхней границе рассчитывается по закону Стефана–Больцмана, а нижняя грань считается теплоизолированной. Уравнения и граничные условия записаны в безразмерной форме. Показано, что поставленная задача сводится к последовательному решению магнитной и конвективной подзадач. В приближении осесимметричного индуктора методами вычислительного эксперимента для различных магнитных чисел Рейнольдса рассчитаны пространственно-временные распределения вектора напряженности магнитного поля в области расплава металла, плотности индукционных токов и мощности источников теплоты. Выявлены закономерности в изменениях указанных выше величин при варьировании управляющего параметра – магнитного числа Рейнольдса. Эта информация в перспективе позволит моделировать конвективные течения в расплаве и выявить эффекты, важные для понимания процессов, влияющих на распределения примесей.
PNRPU Mechanics Bulletin. 2013;(3):193-209
views
MODEL' FORMIROVANIYa OTKOLA
Savelieva N.V., Bayandin Y.V., Naimark O.B.

Abstract

Ранее авторами была предложена структурно-феноменологическая модель поведения материалов при ударно-волновом нагружении, основанная на статистико-термодинамическом описании среды с типичными мезоскопическими дефектами (микротрещинами и микросдвигами). Введены независимые структурные переменные: тензор плотности дефектов, ассоциируемый с деформацией, обусловленной дефектами, и параметр структурного скейлинга, зависящий от двух структурных масштабов – отношения характерного размера дефектов и расстояния между ними. Термодинамическое состояние системы описывается с использованием термодинамического потенциала (свободной энергии Гельмгольца, зависящей также от введенных структурных переменных). В представленной работе была модифицирована ранее предложенная модель плоского соударения пластин на основе уравнений, описывающих эволюцию объемных и сдвиговых дефектов с учетом критерия разрушения, соответствующего достижению объемной доли дефектов заданного критического значения. Сформулированная краевая задача плоского ударно-волнового нагружения решалась численно в пакете прикладных программ MatLab с использованием метода конечных разностей и многошагового интегрирования по времени с автоматическим выбором шага. Верификация разработанной модели проводилась по экспериментально полученным профилям скорости свободной поверхности образца ванадия при давлениях 6 ГПа. Сравнение численных результатов с экспериментом показало удовлетворительное соответствие. Модельное определение откольной прочности ванадия позволило установить зависимость роста последней от величины внешнего воздействия.
PNRPU Mechanics Bulletin. 2013;(3):210-221
views
TERMOUPRUGOST' MIKROPOLYaRNYKh ORTOTROPNYKh TONKIKh OBOLOChEK
Sargsyan S.H., Farmanyan A.J.

Abstract

Рассматриваются трехмерные уравнения и граничные условия невзаимосвязанной термоупругости микрополярных ортотропных тел с независимыми полями перемещений и вращений. Принимая во внимание качественные стороны поведения асимптотического решения граничной задачи трехмерной микрополярной термоупругости в тонкой области оболочки, сформулированы адекватные кинематические и статические гипотезы для построения прикладной двумерной теории термоупругости микрополярных ортотропных тонких оболочек с независимыми полями перемещений и вращений. Принятые кинематические гипотезы представляют собой обобщение на микрополярный случай кинематических гипотез Тимошенко. Что касается статических гипотез, то наряду с принятой в теории тонких оболочек гипотезой о нормальном напряжении, действующем на площадках, параллельных площадкам исходной поверхности, сформулированы некоторые другие предположения, которые созвучны асимптотической теории. Для температурной функции принята гипотеза о ее линейном распределении по толщине оболочки. На основе принятых достаточно общих предположений построена прикладная теория термоупругости микрополярных ортотропных тонких оболочек с независимыми полями перемещений и вращений. Теории термоупругости микрополярных ортотропных тонких стержней и пластин с независимыми полями перемещений и вращений будут исследованы как частные случаи теории оболочек.
PNRPU Mechanics Bulletin. 2013;(3):222-237
views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies