МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДИНАМИКИ АЭРОУПРУГОЙ СИСТЕМЫ «ТРУБОПРОВОД – ДАТЧИК ДАВЛЕНИЯ»
- Авторы: Вельмисов П.А1, Тамарова Ю.А1
- Учреждения:
- Ульяновский государственный технический университет, Ульяновск, Российская Федерация
- Выпуск: № 2 (2024)
- Раздел: Статьи
- URL: https://ered.pstu.ru/index.php/mechanics/article/view/4225
- DOI: https://doi.org/10.15593/perm.mech/2024.2.08
- Цитировать
Аннотация
В данной работе предложены математические модели механических систем «трубопровод – датчик давления», предназначенных для контроля давления рабочей среды в камерах сгорания двигателей. В таких системах для ослабления воздействия виброускорений и высоких температур датчик соединен с двигателем с помощью трубопровода и расположен на некотором расстоянии от него. Движение рабочей среды описывается линейными моделями механики жидкости и газа, для описания динамики упругого чувствительного элемента применяются линейные модели механики твердого деформируемого тела. На основе линейных дифференциальных уравнений с частными производными предложены математические постановки задач, соответствующих трехмерным моделям систем измерения давления в газожидкостных средах для некоторых форм сечения трубопровода, а именно для трубопровода с сечением прямоугольной формы, с сечением в виде сектора и в форме кольца. С помощью введения интегральных характеристик решение задач сводится к исследованию одномерных моделей. Получены уравнения, позволяющие по величине деформации чувствительного элемента датчика определять давление рабочей среды в камере сгорания в каждый момент времени. Предложены аналитические и численно-аналитические методы решения соответствующих начально-краевых задач для систем дифференциальных уравнений. При аналитическом подходе решение задачи сводится к решению дифференциального уравнения с отклоняющимся аргументом. Численно-аналитическое исследование задачи основано на применении метода Галеркина. Также проведен численный эксперимент и представлены примеры расчета деформации чувствительного элемента датчика в случае жесткого закрепления при задании конкретных значений механических параметров системы, в том числе при задании закона изменения избыточного давления рабочей среды в двигателе.
Ключевые слова
датчик давления, трубопровод, упругий элемент, деформация, аэроупругость, динамика, дифференциальные уравнения, метод Галеркина.
Полный текст
Первичным звеном приборного оборудования для измерения давления газожидкостной среды является датчик. Принципы работы датчиков давления, их технические характеристики, а также современное состояние гибких датчиков давления и их практическое применение описываются, например, в работах [1-11]. В частности, в работах [3,4] исследуется движение манометрической трубчатой пружины, совершающей колебания в плоскости кривизны центральной оси в вязкой среде. В работе [9] обобщены результаты исследования высокочувствительного датчика давления, изготовленного на основе микроэлектромеханических систем (МЭМС). Работы [10-11] посвящены математическому моделированию и исследованию диагностики распределения давления и импульсного сканирования по длине трехфазного пьезоэлектролюминесцентного оптоволоконного датчика. Для ослабления воздействий виброускорений и высоких температур датчик соединяется с рабочей камерой сгорания двигателя с помощью трубопровода. В связи с этим, при проектировании систем измерения давления возникает проблема исследования динамики и устойчивости совместных колебаний деформируемого элемента датчика и рабочей среды в трубопроводе. Подобный анализ особенно необходим для изучения поведения системы при нестационарном режиме работы двигателя (например, при взлете или посадке самолета, при возникновении пульсирующего режима работы двигателя и т.д.). В частности, задача состоит в получении и исследовании уравнений, связывающих закон изменения давления рабочей среды на входе в трубопровод (на выходе из камеры сгорания двигателя) и деформацию упругого элемента датчика, и предназначенных по величине деформации чувствительного элемента рассчитать давление в двигателе. Исследованию динамики и устойчивости трубопроводов и их элементов при движении внутри них жидкости или газа посвящены работы [12-16] и многие другие. В работе [17] проведено исследование математической модели системы «трубопровод-датчик давления» для осесимметричной трубы в случае несжимаемости рабочей среды. Математическое моделирование совместной динамики чувствительного элемента датчика давления и сжимаемой рабочей среды в трубопроводе на основе одномерной и плоской двумерной моделей проводилось в работах [18,19]. В настоящей работе исследуется совместная динамика чувствительного элемента датчика давления и рабочей среды в трубопроводе на основе математических моделей, представляющих собой начально-краевые задачи для систем дифференциальных уравнений. Предполагается, что рабочая среда идеальная и сжимаемая. Предложены трехмерные модели с разными сечениями трубопровода: прямоугольник, сектор, кольцо. Использование трубопроводов с различными сечениями предназначено для обеспечения наибольшей эффективности охлаждения рабочей среды за счет увеличения площади поверхности контакта трубопровода с внешней охлаждающей средой (за счет увеличения периметра сечения трубопровода). Введение интегральных характеристик основных величин динамических систем позволило значительно упростить решение задач за счет сведения трехмерных задач к одномерным, исследование которых реализовано двумя способами: аналитическое исследование, приводящее к решению уравнения с отклоняющимся аргументом, и численно-аналитическое исследование на основе метода Галеркина. С помощью программного комплекса [20] проведены численные эксперименты и построены графики деформации чувствительного элемента датчика.Об авторах
П. А Вельмисов
Ульяновский государственный технический университет, Ульяновск, Российская Федерация
Ю. А Тамарова
Ульяновский государственный технический университет, Ульяновск, Российская Федерация
Список литературы
- Проектирование упругих элементов нано- и микроэлектромеханических систем / Е. М. Белозубов [и др.] // Измерительная техника. – 2011. – №1. – С. 17-19
- Казарян А.А., Грошев Г.П. Универсальный датчик давления // Измерительная техника. – 2008. – №3. – С. 26-30
- Пирогов С.П. Манометрические трубчатые пружины. – С.Петербург: Недра, 2009. – 276 с
- Пирогов С.П., Черенцов Д.А. Теоретические основы проектирования вибростойких манометров // Измерительная техника. – 2016. – №8. – С. 38-41
- Эткин Л.Г. Виброчастотные датчики. Теория и практика. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 407 с
- Chen, J. Flexible Pressure Sensors and Their Applications // Highlights in Science, Engineering and Technology. – 2023. – Vol. 44. – pp. 54–60. doi: 10.54097/hset.v44i.7193
- Hou, Xing-Yu, Guo, Chuan-Fei. Sensing mechanisms and applications of flexible pressure sensors // Acta Physica Sinica. – 2020. – 69(17). – 178102. doi: 10.7498/aps.69.20200987
- Huang Y, Fan X, Chen S, et al. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing // Advanced Functional Materials. – 2019. – Vol. 29, issue 12. – 1808509. doi: 10.1002/adfm.201808509
- Basov, Mikhail, Prigodskiy, Denis. Investigation of sensitive element for pressure sensor based on bipolar piezotransistor. – 2021. doi: 10.21203/rs.3.rs-677129/v1
- Паньков А.А. Математическое моделирование пьезоэлектролюминесцентного эффекта и диагностика распределения давления по длине оптоволоконного датчика // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2016. - №4. – С. 289-302. doi: 10.15593/perm.mech/2016.4.17
- Паньков А.А. Математическая модель импульсного сканирования давления по длине пьезоэлектролюминесцентного оптоволоконного датчика // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2018. - №1. – С. 73-82. doi: 10.15593/perm.mech/2018.1.06
- Paidoussis, Michael P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics // Journal of Sound and Vibration. – 2008. – No. 3 (310). – pp. 462–492
- Kheiri M., Paidoussis M.P. Dynamics and stability of a flexible pinned-free cylinder in axial flow // Journal of Fluids and Structures. – 2015. – V. 55. – pp.204–217
- Aulisa E., Ibragimov A., Kaya-Cekin E.Y. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid // Discrete and Continuous Dynamical Systems, Ser. S. – 2014. – V. 7, no. 6. – pp. 1133–1148
- Gatica, G.N., Heuer, N., Meddahi, S. (2014) Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D. // Numer. Methods Partial Differ. Equations 30. – 2014. – № 4. – pp. 1211-1233
- Tian, Fang-Bao FSI modeling with the DSD/SST method for the fluid and finite difference method for the structure // Comput. Mech. – 2014. – 54, № 2. – pp. 581-589
- Velmisov Petr and Pokladova Yu.V..(2019). Mathematical modelling of the "Pipeline – pressure sensor" system // Journal of Physics: Conference Series. – 2019. – 1353. 012085. doi: 10.1088/1742-6596/1353/1/012085
- Velmisov P.A., Tamarova Y.A., Pokladova Y.V. Mathematical modeling of pressure monitoring systems in fluid and gaseous media // AIP Conference Proceedings. – 2021. – 2333. – 120004. doi: 10.1063/5.0041778
- Velmisov P.A., Tamarova Y.A., Pokladova Y.V. Mathematical modeling of a class of aerohydroelastic systems // Journal of Mathematical Sciences (United States). – 2021. – 255(5). – pp. 587-594. doi: 10.1007/s10958-021-05395-2
- Тамарова Ю. А., Вельмисов П. А., Анкилов А. В. Комплекс программ для математического моделирования механической системы «трубопровод – датчик давления», Свидетельство о регистрации программы для ЭВМ 2022615319, 30.03.2022, заявка №2022615014 от 28.03.2022