Improving the quality of the surfaces of products obtained by electrical discharge machining using electrolytic-plasma polishing technology

Abstract


The actual task is to develop a technology that allows the finishing of surfaces of difficult-to-profile parts made of hard-to-work materials obtained by electro erosion treatment. The purpose of the work is an experimental study of the application of electrolyte-plasma polishing technology for finishing surface of parts obtained by the method of copying and piercing erosion processing. As the processed material, structural alloyed steel 38Х2Н2МА in accordance with GOST 4543-71 was chosen. Electrical discharge machining processing of the sample was carried out on an Electronica smart CNC echo sander. Experiments on electrolyte-plasma polishing of experimental samples after Electrical discharge machining were carried out on a laboratory installation "Polytech-15" with a power of 15 kW. The method of electrolytic-plasma polishing is based on electro-discharge phenomena in the "metal-electrolyte" system, while the workpiece is an anode. Polishing of metals occurs in the stress range 200-350 (V) and current density of 0.2..0.5 (A/cm2). At a voltage of more than 200 (V) around the anode, a stable thin (50-100 μm) vapor-gas shell forms during the transition from bubble boiling to film anode. The electric field strength in the gas-vapor cladding reaches 104-105 (V/cm). Near the microprotrusions, the electric field strength increases, and in these areas microplasma discharges migrating over the surface arise, which provide a complex chemical and physical effect on the surface material of the article. In the course of the study, the change in the roughness of the treated surface was studied. The paper shows the possibility of applying electrolyte-plasma polishing technology to improve the quality of the machined surface of 38Х2Н2МА steel after Electrical discharge machining . It is established that the use of electrolyte-plasma polishing technology within 5 minutes of operation allowed to reduce the roughness of the surface processed by the Electrical discharge machining surface by an average of 5 times. It is shown that in order to obtain a roughness of the machined part surface with a value of Ra 1.6 μm, it is more efficient to use a combination of Electrical discharge machining technologies at regimes No. 2 and electrolytic-plasma polishing.

Full Text

Введение Эффективность применения технологии электроэрозионной обработки (ЭЭО) обусловлена возможностью изготовления как отдельных сложнопрофильных элементов на заготовках, так и полноценных деталей машин и механизмов, выполненных из материалов с повышенными физико-механическими свойствами. Электроэрозионная обработка металлов и других токопроводящих материалов основана на эффекте расплавления и испарения микропорций материала под воздействием импульсов электрической энергии в канале разряда, возникающем между поверхностью обрабатываемой детали и электродом-инструментом, погруженным в жидкую среду (обычно неэлектропроводную среду - рабочую жидкость). Следующие друг за другом импульсные разряды производят выплавление и испарение микропорций материала с поверхности обрабатываемой детали. Развивающиеся в жидкости гидродинамические силы выбрасывают расплавленный материал из зоны разрядов, и электрод-инструмент получает возможность внедряться в обрабатываемую деталь, образуя в ней углубление, соответствующее форме электрода [1-8]. Установлено, что в результате единичного разряда с поверхности материала вылетают сотни частиц разного размера, образуя так называемые единичные лунки [1-9]. При увеличении энергии импульса путем изменения режимов обработки число частиц большего размера, а также их максимальный диаметр возрастают, что существенным образом оказывает влияние на качество обработанной поверхности. Одним из показателей качества поверхности детали, обработанной импульсами электрического тока, является шероховатость. В процессе ЭЭО шероховатость поверхности образуется путем наложения друг на друга единичных лунок. В связи с тем, что технология ЭЭО применяется при обработке внутренних и наружных сложнопрофильных поверхностей изделий, выполненных из материалов с повышенными физико-механическими свойствами, применение традиционных механических операций финишной обработки сопровождается технологическими и экономическими ограничениями, связанными с разработкой специализированной оснастки, инструмента и зачастую ручного труда. Применение технологий химической и электрохимической полировки в связи с высокой токсичностью электролитов требует больших затрат на обеспечение экологической безопасности людей и окружающей среды, а также на утилизацию отходов [10-12, 14]. Современные электроэрозионные станки позволяют получать шероховатость обработанной поверхности Ra = 0,1…0,4 мкм. Данные показатели шероховатости достигаются при подключении электрода-детали к отрицательному полюсу генератора импульсов и назначении режимов с минимальной энергией импульса. Однако обработка изделий на чистовых режимах резания характеризуется низкой производительностью процесса ЭЭО. В работе [6] показано, что при обработке стали 38Х2Н2МА на копировально-прошивном станке на чистовых режимах производительность обработки составляет 0,05 мм/ч. Низкая производительность процесса ЭЭО ведет к увеличению технологического времени и себестоимости изготовления изделия. В связи с этим при разработке технологического процесса ЭЭО зачастую назначаются более грубые показатели по качеству обработанных поверхностей, что не позволяет реализовать в полной мере заложенные в изделие эксплуатационные характеристики. Лучшим решением для поставленных задач является применение технологии электролитно-плазменного полирования сложнопрофильных поверхностей (ЭПП). Метод ЭПП основан на электроразрядных явлениях в системе металл-электролит, при этом обрабатываемая деталь является анодом. Полирование металлов происходит в области значений напряжения 200-350 В и плотности тока 0,2-0,5 А/см2. При напряжении более 200 В вокруг анода при переходе от пузырькового кипения к пленочному образуется устойчивая тонкая (50-100 мкм) парогазовая оболочка (ПГО). Напряженность электрического поля в ПГО достигает 104-105 В/см. Вблизи микровыступов напряженность электрического поля возрастает, и на этих участках возникают мигрирующие по поверхности микроплазменные разряды, которые обеспечивают комплексное химическое и физическое воздействие на материал поверхности изделия. В микроразрядах выделяется значительная энергия и наблюдается интенсивный процесс снижения высоты микронеровностей поверхности, что приводит к ее полированию. Технология ЭПП является экологически безопасной и не требует применения кислот, щелочи и других вредных веществ в опасных концентрациях [12-20]. В настоящее время не в полной мере изучен вопрос применения технологии ЭПП для обработки поверхностей деталей, полученных методом ЭЭО. Цель работы - экспериментальное исследование применения технологии ЭПП для финишной обработки поверхностей деталей, полученных методом копировально-прошивной ЭЭО. Материалы и методы исследования В качестве обрабатываемого материала выбрана конструкционная легированная сталь 38Х2Н2МА по ГОСТ 4543-71. Экспериментальный образец представляет собой пластину размером 10´20 мм и толщиной 2 мм. Электроэрозионная обработка образца проходила на копировально-прошивном электроэрозионном станке Electronica Smart CNC. Рабочая жидкость - масло И-20А. Режимы обработки представлены в табл. 1, где Ton - время включения импульсов, мкс; Tau - рабочий цикл импульса, %; U - напряжение, В; I - сила тока, А. Глубина прожига составляла 0,4 мм. Таблица 1 Режимы ЭЭО Номер эксперимента Режимы обработки I, А U, В Ton, мкс Tau, % 1 6 50 50 26 2 50 50 50 26 3 20 50 50 26 4 3 50 50 26 5 1 50 50 26 После проведенных экспериментов по прожигу образцов на заданную глубину при разных режимах ЭЭО производился замер шероховатости обработанной поверхности, а также микроскопический анализ структуры обработанной поверхности. Измерение шероховатости производилось на профилометре Mahr Perthometer S2 по ГОСТ 2789-73. Анализ структуры проводился при помощи светового микроскопа Olympus при увеличении ´200. Эксперименты по электролитно-плазменной полировке экспериментальных образцов после ЭЭО проводились на лабораторной установке Polytech-15 мощностью 15 кВт. Используемый метод - частичное погружение. Для визуального наблюдения результата образцы из стали 38Х2Н2МА опускались в ванну с электролитом наполовину, в верхней части располагался зажим. Непосредственно к образцу подключался положительный полюс источника питания, в то время как к рабочей ванне подводился отрицательный полюс. Напряжение на электродах составляло 270 В. Для дифференциации уровня выпрямленного выходного напряжения в установке Polytech-15 используется лабораторный трехфазный автотрансформатор. В качестве электролита использовались растворы солей в дистиллированной воде. Электролит представлял трехкомпонентный раствор в следующих концентрациях (вес.): хлорид аммония NH4Cl - 3 %, сульфат аммония (NH4)2SO4 - 1 %, Трилон Б - 0,5 %. Класс чистоты веществ - ЧДА. Каждый компонент раствора взвешивался на электронных весах «Масса-К ВК 150.1». Создание раствора производилось путем последовательного добавления компонентов в подогретую до 60 °С воду с постоянным перемешиванием. Рабочая температура электролита составляла 90 °С. Время обработки экспериментального образца составляло 5 мин [12-18]. После обработки напряжение снималось, образец извлекался из ванны и промывался в теплой технической воде, после чего проходил сушку на воздухе. На обработанных методом ЭПП поверхностях образцов осуществлялся повторный замер шероховатости, а также микроскопический анализ структуры обработанной поверхности. Результаты исследования и обсуждение В процессе электролитно-плазменной полировки образцов, полученных методом копировально-прошивной электроэрозионной обработки, при подаче напряжения на электроды вокруг поверхности образца, погруженной в электролит, загоралась стабильная плазма аномального тлеющего разряда. Происходило комплексное электрохимическое и электрофизическое воздействие на поверхность образца, в результате чего происходило сглаживание микронеровностей (полирование). Обработанные поверхности приобретали металлический блеск. Установлено, что при снижении температуры электролита ниже 90 °С толщина пароплазменной оболочки уменьшалась, возникал эффект анодного нагрева. Эффект полирования в данном случае отсутствовал, поверхность образца покрывалась черными пятнами. В табл. 2 представлены результаты замера высоты микронеровностей, полученных после ЭЭО на режимах табл. 1, и результаты замеров этих же образцов после применения метода ЭПП. Таблица 2 Шероховатость поверхностей деталей Номер эксперимента I, А Ra после ЭЭО Ra после ЭПП 1 6 4,6 1,4 2 50 7,7 1,6 3 20 6,7 1,4 4 3 1,6 0,4 5 1 1,5 0,4 Из проведенных исследований установлено, что применение технологии ЭПП позволило снизить высоту микронеровностей, полученных после ЭЭО, в среднем в 5 раз. На рис. 1 представлены профилограммы поверхностей образцов № 4 и 2 (см. табл. 2) после ЭЭО. На рис. 2 представлены профилограммы поверхностей образцов № 4 и 2 (см. табл. 2) после ЭПП. Анализ профилограммы показал (см. рис. 2), что после ЭПП происходит выглаживание выступов единичных лунок, полученных после электроэрозионной обработки. Максимальная высота микронеровностей детали № 4 Rmaх уменьшилась от значения 10,9 мкм (после ЭЭО) до значения 4,1 мкм (после ЭПП). Максимальная высота микронеровностей детали № 2 Rmaх уменьшилась от значения 60,6 мкм (после ЭЭО) до значения 9,9 мкм (после ЭПП). Средний шаг неровности Sm после ЭПП увеличился до значения 421,4 в сравнении со значением среднего шага после ЭЭО Sm = 197,4 мкм (деталь № 4). Отмечено, что увеличение среднего шага ведет к повышению плотности контакта поверхностей. На рис. 3 и 4 представлен анализ поверхностей заготовки (образцы № 4 и 2) после ЭЭО и последующего ЭПП. Анализ поверхности образца № 4 показал, что после ЭЭО обработанная поверхность представляет а б Рис. 1. Профилограммы поверхностей деталей после ЭЭО: а - деталь № 2; б - деталь № 4 а б Рис. 2. Профилограммы поверхностей деталей после ЭПП: а - деталь № 2; б - деталь № 4 а б Рис. 3. Микроскопический анализ обработанных поверхностей детали № 4, ´100: а - поверхность после ЭЭО; б - поверхность после ЭПП а б Рис. 4. Микроскопический анализ обработанных поверхностей детали № 2, ´100: а - поверхность после ЭЭО; б - поверхность после ЭПП собой большое количество наложенных друг на друга единичных лунок (см. рис. 3, а). Видны следы оплавления металла на границах лунок. Поверхность образца № 2 (см. рис. 4, а) после ЭЭО характеризуется увеличенным размером единичных лунок без четко выраженных границ. Наблюдаются зоны повышенного плавления металла. После ЭПП (см. рис. 3, б и рис. 4, б) на обработанных поверхностях не наблюдается ярко выраженных следов единичных лунок. Поверхность ровная, зон оплавления металла после ЭЭО не наблюдается. В ходе проведенного исследования установлено, что для обработки заготовки методом ЭЭО для обеспечения шероховатости поверхности 1,6 мкм необходимо использовать режим с минимальной энергией импульса (образец № 4). Показано, что для получения аналогичного значения шероховатости возможно использовать технологию финишной обработки методом ЭПП в сочетании с более производительным режимом ЭЭО (образец № 2). Выводы Показана возможность применения технологии ЭПП для повышения качества обработанной поверхности стали 38Х2Н2МА после ЭЭО. Установлено, что ЭПП за 5 мин рабочего времени позволило снизить шероховатость обработанной методом ЭЭО поверхности в среднем в 5 раз. Показано, что для получения шероховатости обработанной поверхности детали значением Ra = 1,6 мкм эффективнее использовать сочетание технологий ЭЭО на режимах № 2 и ЭПП.

About the authors

T. R Ablyaz

Perm National Research Polytechnic University

K. R Muratov

Perm National Research Polytechnic University

E. U Kochergin

Perm National Research Polytechnic University

T. V Shakirzanov

Perm National Research Polytechnic University

References

  1. Surface analysis of bimetal after edm machining using electrodes with different physical and mechanical properties / T.R. Ablyaz, M.Y. Simonov, E.S. Schlykov, K.R. Muratov // Research Journal of Pharmaceutical, Biological and Chemical Sciences. - 2016. - Vol. 7, iss. 5. - P. 974-981.
  2. Абляз Т.Р., Ханов А.М., Хурматуллин О.Г. Современные подходы к технологии электроэрозионной обработки материалов. - Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2012. - 121 с.
  3. Журин А.В. Методы расчета технологических параметров и электродов-инструментов при электроэрозионной обработке: дис. … канд. техн. наук / Тул. гос. ун-т. - Тула, 2005. - 20 с.
  4. Ablyaz T.R. Roughness of the machined surface in wire EDM // Russian Engineering Research. - 2016. - Vol. 36, № 8. - P. 690-691.
  5. Ablyaz T.R., Zhurin A.V. Influence of wire-cut electrical discharge machining on surface quality // Russian Engineering Research. - 2016. - Vol. 36, № 2. - P. 156-158.
  6. Foteev N.K. Quality of surface after electroerosion treatment // STIM. - 1997. - № 8. - Р. 43-48.
  7. Popilov L.Ya. Electrophysical and electrochemical treatment of materials (in Russian) // Mashinostroenie. - Moscow, 1982. - 400 p.
  8. Ploshkin V.V. Structural and phase transformations in surface layers of steels under electroerosion treatment: Ph.D. in thesis. - Moscow, 2006. - 281 p.
  9. Абляз Т.Р., Борисов Д.А. Влияние шероховатости рабочей поверхности электрода-инструмента на производительность электроэрозионной обработки стали 38х2Н2МА // СТИН. - 2017. - № 3. - С. 19-22.
  10. Experimental investigation into the EDM process of γ-TiAl/M / М. Shabgard [et al.] // Turkish Journal of Engineering & Environmental Sciences. - 2014. - № 38. - Р. 231-239.
  11. Ojha K., Garg R.K., Singh K.K. MRR improvement in sinking electrical discharge machining: a review // J. Miner Mater Charac Eng. - 2010. - № 9. - Р. 709-739.
  12. Dey S., Roy D.C. Experimental study using different tools // International Journal of Modern Engineering Research (IJMER). - 2013. - Vol. 3, iss. 3. - Р. 1263-1267.
  13. Janmanee P., Muttamara A. Performance of difference electrode materials in electrical discharge machining of tungsten carbide // Energy Research Journal. - 2010. - № 1(2). - Р. 87-90.
  14. The properties and characteristics of the new electrodes based on Cr-Cu for EDM machines / H. Tsai [et al.] // International Journal of Machine Tools & Manufacture. - 2003. - Vol. 43, № 3. - Р. 245-252.
  15. Автоматизация процессов электролитно-плазменной обработки пространственно сложных поверхностей токопроводящих изделий методом контролируемого струйного полива / Д.А. Зарубин, Л.А. Ушомирская [и др.] // Современные высокоэффективные технологии и оборудование в машиностроении. - 2016. - 6-8 окт. - 347 с.
  16. Куликов И.С., Ващенко С.В., Камнев А.Я. Электролитно-плазменная обработка материалов. - Минск: Беларус. Наука, 2010. - 232 с.
  17. Ушомирская Л.А., Новиков В.И. Полирование легированных сталей в нетоксичных электролитах при высоком напряжении // Металлообработка: науч.-производ. журн. - 2008. - № 1(58). - С. 23-25.
  18. Ушомирская Л.А., Новиков В.И., Фоломкин А.И. Формирование газовой анодной оболочки и ее влияние на возможности электролитно-плазменной обработки сложных поверхностей // Металлообработка: науч.-производ. журнал. - 2012. - № 3(69). - С. 11-14.
  19. Scott D., Boyina S., Rajurkar K. Analysis and optimization of parameter combination in wire electrical discharge machining // Int. J. Prod. Res. - 1991. - № 29(11). - Р. 2189-2207.
  20. Tarng Y., Ma S., Chung L. Determination of optimal cutting parameters in wire electrical discharge machining // Int. J. Mach. Tools Manuf. - 1995. - № 35(129). - Р. 1693-1701.

Statistics

Views

Abstract - 98

PDF (Russian) - 44

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies