Кинетика испарения металлов из Sb-Pb-Sn-сплава при вакуумной перегонке

Аннотация


Объектом исследования являются Sb-Pb-Sn-сплавы следующего состава, моль %: 70-12,5 Sb; 15-5 Pb; 15-75 Sn, образующиеся при плавке медеэлектролитного шлама, для получения товарных концентратов сурьмы, свинца и олова. Цель работы - определение скорости испарения металлов из Sb-Pb-Sn-сплавов различного состава в зависимости от температуры и давления, а также выявление лимитирующей стадии процесса. При проведении исследования были использованы различные методы и подходы: расчет коэффициентов активности компонентов Sb-Pb-Sn-сплава выполнен с помощью объемной модели молекулярного взаимодействия мolecular interaction volume model (MIVM); скорость испарения компонентов сплава определена по уравнению Герца-Кнудсена-Ленгмюра; кажущаяся энергия активации рассчитана по уравнению Аррениуса. Новизной исследования является расчет коэффициентов активности с использованием модели MIVM. Определена кинетика испарения металлов из Sb-Pb-Sn-сплава в интервале температур 823-1473 К и давления 1,33-133 Па, описываемая уравнением первого порядка. Коэффициенты общего массопереноса свинца, сурьмы, олова ( k Ме, м·с-1) при испарении из сплава Sb-Pb-Sn (0,125-0,125-0,75) составляют (2,849-13,826)·10-7, (0,949-4,833)·10-7,(0,532-2,777)·10-9 при Т = 823…1073 К, Р = 13,3 Па соответственно. Рассчитана кажущаяся энергия активации испарения металлов из Sb-Pb-Sn-расплава Е = 46,39…48,56 кДж/моль, которая значительно ниже, чем для чистых металлов: Е = 150…169 кДж/моль. Показано, что количественный перенос свинца и сурьмы в газовой фазе не ограничивает скорость при вакуумной перегонке. Испарение металлов из Sb-Pb-Sn-сплава совместно контролируется массопереносом, главным образом в жидкой фазе, а также через поверхностный слой на границе раздела фаз жидкость-газ в исследованных условиях эксперимента. Параметры кинетики испарения компонентов Sb-Pb-Sn-сплавов обеспечивают необходимой информацией для проектирования технологического оборудования промышленного производства вакуумной металлургии, а также для прогнозирования температуры и давления процесса с целью получении Sb-, Pb- и Sn-содержащих продуктов заданного состава.

Полный текст

Введение Вакуумная перегонка считается одним из самых эффективных и экологически чистых методов для разделения и очистки, переработки и рафинирования различных металлов. Она имеет ряд преимуществ, таких как относительно низкое потребление энергии, короткий производственный цикл, высокая рентабельность, отсутствие подлежащих утилизации отходов, по сравнению с традиционными методами, например пирометаллургической переработкой и электролизом [1-4]. Возможности разделения черновых металлов путем расчета точки кипения и давления пара чистых компонентов-примесей и коэффициента разделения полиметаллических сплавов при различных экспериментальных условиях были изучены ранее [5-8]. Результаты исследования показали содержание сурьмы и свинца менее 0,01 % в рафинированном олове при вакуумной перегонке. В предыдущих работах были получены диаграмма равновесного состава газ-жидкость и диаграмма равновесных фаз газ-жидкость [9-11]. В настоящее время большинство исследований сконцентрировано на термодинамике разделения полиметаллических сплавов вакуумной перегонкой, поскольку позволяет определить возможность, направление и ограничение протекания металлургических реакций [12]. При изучении кинетики испарения металлов можно выявить эффективные условия процесса, такие как температура, степень вакуума и продолжительность перегонки, необходимые при проектировании процесса разделения компонентов сплавов. Целью работы являлось определение скорости испарения металлов из Sb-Pb-Sn-сплавов различного состава в зависимости от температуры и давления, а также выявление лимитирующей стадии процесса. Методика исследований Испарение металла из жидкой в газовую фазу при низком давлении включает в себя следующие стадии: массоперенос в жидкой фазе (а); испарение в поверхностный слой на границе раздела фаз жидкость-газ (б); массоперенос в газовой фазе (в) [1]. Уравнение скорости испарения в процессе перегонки [13] (1) V = m/r , (2) (3) где с - концентрация испаряющегося элемента в расплаве в момент времени t; kMe - константа скорости испарения; S и V - площадь поверхности и объем расплава соответственно. Значение V можно вычислить через плотность r и массу m сплава по уравнению (2); wSb, wPb и wSn - массные доли Sb, Pb и Sn в жидкой фазе; n - порядок реакции. Разные порядки реакции для металлов соответствуют различным формам расчетных уравнений. Существует три способа для определения порядка реакции: метод интеграции, метод половинного изменения и графический метод. Графический метод обычно используется для проверки порядка реакции. Если мы используем массовую долю для определения концентрации испаряющегося элемента в кинетическом уравнении (1), скорость испарения металла можно записать следующим образом: (4) где ММе - молекулярная масса металла. Для реакций первого порядка (n = 1) справедливо равенство lnW(t) = lnW(o) - (5) В данном исследовании из трех стадий испарения процессом (в) можно пренебречь при рабочем давлении в системе (р ≤ 13,3 Па), которое ниже критического давления для легковозгоняемых cурьмы (273,7 Па) и свинца (27,5 Па) [14], поэтому общая скорость реакции не лимитируется массопереносом в газовой фазе. В результате лимитирующая стадия связана с двумя другими стадиями, обладающими сопротивлением: массопереносом в жидком металле и через поверхностный слой на границе раздела фаз. В соответствии с принципами массопереноса, который мы обсуждали выше, константа скорости испарения металла может быть выражена как (6) где и - коэффициенты массопереноса металла (м·с-1) в жидкой и газовой фазах соответственно. Скорость испарения компонентов сплава представлена формулой, производной от выражения для испарения чистого жидкого металла в идеальном вакууме (уравнение Герца-Кнудсена-Ленгмюра) [15]: (7) где a - коэффициент поверхностного испарения (a = 1 для жидких металлов); γМе - коэффициент активности металла; ММе - атомный вес металла; - давление насыщенного пара чистого металла [16]. Если определена константа скорости испарения kMe, можно оценить кажущуюся энергию активации по уравнению Аррениуса [15]: (8) где ЕМе - кажущаяся энергия активации испарения металла; R - газовая постоянная; C - константа, которая не зависит от температуры Т. Образцы сплавов Sb-Pb-Sn для эксперимента массой 50-100 г каждый были подготовлены с использованием чистых сурьмы, свинца и олова (99,99 мас. %). Навески исходных металлов были проплавлены в индукционной печи в атмосфере аргона высокой чистоты для получения сплавов состава, мол. %: 70-12,5 Sb; 15-5 Pb; 15-75 Sn. Лабораторные эксперименты по дистилляции компонентов сплавов проводились в вертикальной вакуумной печи [8]. Степень вакуума в печи на время эксперимента составляла 1,33-133 Па, температура 823-1073 К. Состав образцов возгонов и остатков определяли из предварительно полученных растворов атомно-абсорбционным методом на установке GBC 933АВ Plus. В экспериментах использовали образцы сплавов цилиндрической формы. Сначала образец помещали в цилиндрический тигель (h = 40 мм, d = 40 мм) из тонкодисперсных зерен графита высокой плотности. Затем тигель переносили в вакуумную печь и нагревали, контролируя температуру. Для предотвращения испарения металлов на стадии плавления образца процесс осуществляли в атмосфере аргона при нормальном давлении. Разряжение в рабочей камере производили паромасляным диффузионным насосом при достижении необходимой температуры - этот момент считали началом вакуумной перегонки (t = 0). Затем поддерживали в камере давление и температуру в течение заданного времени эксперимента. По окончании опыта выключали обогреватель, аргон заполнял камеру, давление в которой нормализовалось. Металлы, перешедшие в возгоны, конденсировались на холодной пластине, подключенной к циркуляционной водной системе. При температуре 40 °С возгоны и остаток вынимали из печи и взвешивали. Для проверки адекватности расчетных значений содержания компонентов сплавов в жидкой и газовой фазах сравнили их с экспериментальными данными. Для этого были вычислены показания среднего относительного отклонения (Si) и среднего квадратичного отклонения (9) (10) где x(y)i,exp и x(y)i,cal - экспериментальные и расчетные значения содержания компонента i в жидкой (х) и газовой (у) фазах соответственно; n - количество экспериментальных данных. Результаты и их обсуждение Зависимость lnw(t) от (S/V)t (табл. 1) описывается линейными функциями (рис. 1). Процесс испарения металлов из Sb-Pb-Sn-сплава при данных условиях эксперимента соответствует реакции первого порядка. Линейные зависимости, полученные при использовании метода наименьших квадратов, представлены в табл. 2. Константа испарения металлов kМе определяется из наклона линейной зависимости lnw(t) от (S/V)t. Этот показатель также можно рассматривать как коэффициент общего массопереноса. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава зависят от температуры, давления и химического состава сплава. Таблица 1 Экспериментальные и расчетные параметры возгонки сплава Sb-Pb-Sn (0,125-0,125-0,75) при давлении 13,3 Па T, К t, c Масса cплава, г V·10-7, м3 w(t), % Sb/Pb/Δw(t)·10-3Sn (S/V)t·105, c/м lnw(t) Sb/Pb/Sn 823 0 1200 2400 3600 4800 6000 80,0 78,83 77,75 76,74 75,81 74,93 105,88 102,79 99,97 97,39 95,05 92,88 12,50/12,50/75,00 11,42/12,13/0,126 10,44/11,77/0,252 9,54/11,42/0,378 8,72/11,09/0,504 7,97/10,76/0,630 0 3,055 6,167 9,33 12,544 15,796 -2,079/-2,079/-0,2877 -2,169/-2,109/-0,2879 -2,260/-2,140/-0,2880 -2,350/-2,170/-0,2882 -2,440 -2,199/-0,2884 -2,529/-2,229/-0,2885 973 1200 2400 3600 4800 6000 77,03 74,58 72,55 70,86 69,43 98,15 92,04 87,17 83,24 80,01 9,83/11,49/0,36 7,73/10,57/0,72 6,08/9,72/1,08 4,79/8,93/1,44 3,76/8,21/1,80 3,10 6,34 9,68 13,11 16,61 -2,319/-2,164/-2,2882 -2,56/-2,247/-2,2886 -2,80/-2,331/-2,2891 -3,039/-2,416/-2,2896 -3,281/-2,500/-2,2901 1073 1200 2400 3600 4800 6000 74,59 70,86 68,24 66,34 64,94 92,05 83,24 77,39 73,36 70,51 7,73/10,57/0,72 4,79/8,93/1,44 2,96/7,55/2,16 1,83/6,38/2,88 1,13/5,40/3,60 3,17 6,55 10,07 13,68 17,32 -2,559/-2,247/-2,2886 -3,039/-2,416/-2,2896 -3,520/-2,584/-2,2906 -4,001/-2,752/-2,2915 -4,483/-2,919/-2,2925 а б в Рис. 1. Зависимость логарифма массовой доли металла lnwMe от произведения глубины расплава S/V и продолжительности процесса t для cурьмы (а), свинца (б), олова (в) в сплаве Sb-Pb-Sn (0,125-0,125-0,75) при давлении 13,3 Па и температуре, К: 823 (1); 973 (2); 1073 (3) При увеличении температуры - 823-1073 К (Р = 13,3 Па; Sb-Pb-Sn = 12,5-12,5-75) значения kМе, м·с-1, возрастают для сурьмы, свинца и олова: (2,849…13,826)·10-7, (0,949…4,833)·10-7, (0,532…2,777)·10-9 соответственно. При понижении давления - 133-1,33 Па (Т = 1073 К; Sb-Pb-Sn = = 12,5-12,5-75) значения kМе, м·с-1, возрастают для сурьмы, свинца, олова: (4,822…39,667)·10-7, (1,864…13,243)·10-7, (2,044…8,440)·10-9 соответственно. Таблица 2 Кинетические уравнения возгонки Sb-Pb-Sn-сплавов при различных параметрах T, К Р, Па Sb/Pb/Sn Уравнение R2 ±Δlnw(t) 823 13,3 12,5/12,5/70 lnwSb = -2,849·10-7(S/V)t - 2,079 lnwPb = -0,949·10-7(S/V)t - 2,079 lnwSn = -5,318·10-10(S/V)t - 0,2877 0,999 0,998 0,999 0,0012 0,0010 0,00010 973 lnwSb = -7,221·10-7(S/V)t - 2,092 lnwPb = -2,561·10-7(S/V)t - 2,082 lnwSn = -1,442·10-9(S/V)t - 0,2877 0,999 0,999 0,998 0,0010 0,0014 0,00011 1073 lnwSb = -13,826·10-7(S/V)t - 2,110 lnwPb = -4,833·10-7(S/V)t - 2,091 lnwSn = -2,777·10-9(S/V)t - 0,2877 0,997 0,998 0,998 0,0011 0,0012 0,00013 133 lnwSb = -4,822·10-7(S/V)t - 2,079 lnwPb = -1,864·10-7(S/V)t - 2,079 lnwSn = -2,044·10-9(S/V)t - 0,2877 0,998 0,999 0,998 0,0010 0,0013 0,0011 1,33 lnwSb = -39,667·10-7(S/V)t - 2,079 lnwPb = -13,243·10-7(S/V)t - 2,079 lnwSn = -8,440·10-9(S/V)t - 0,2877 0,997 0,999 0,998 0,0012 0,0010 0,0011 13,3 30/5/65 lnwSb = -18,614·10-7(S/V)t - 1,204 lnwPb = -2,797·10-7(S/V)t - 2,996 lnwSn = -2,171·10-9(S/V)t -0,4308 0,999 0,998 0,998 0,0013 0,0014 0,0013 50/10/40 lnwSb = -16,241·10-7(S/V)t - 0,693 lnwPb = -3,476·10-7(S/V)t - 2,303 lnwSn = -1,392·10-9(S/V)t - 0,9163 0,997 0,998 0,998 0,0012 0,0011 0,0014 70/15/15 lnwSb = -10,877·10-7(S/V)t - 0,357 lnwPb = -2,449·10-7(S/V)t - 1,897 lnwSn = -0,680·10-9(S/V)t - 1,8971 0,999 0,998 0,999 0,0014 0,0014 0,0012 Зависимость kМе, м·с-1, легко возгоняемых сурьмы и свинца от доли металлов в сплаве Sb-Pb-Sn носит экспоненциальный характер, достигая максимума kSb = 39,667·10-7 и kPb = 39,667·10-7 при хSb = 0,3 и хPb = 0,125. Для олова значения константы скорости испарения линейно возрастают (0,680…2,777)·10-9 м·с-1 в диапазоне хSn = 0,15…0,7. Линейные зависимости lnkMe от 1/T, построенные с помощью регрессионного анализа экспериментальных данных, показывают, что влияние температуры на величину коэффициента скорости испарения металлов усиливается от сурьмы к олову (рис. 2). Рис. 2. Зависимость логарифма константы скорости испарения (lnkMe) от обратной температуры (1/T) для сурьмы (1), свинца (2), олова (3) в сплаве Sb-Pb-Sn (0,125-0,125-0,75) при давлении 13,3 Па Величина кажущейся энергии активации испарения (Е, кДж/моль) металлов получена с помощью уравнения (8): 46,39Sb; 47,80Рb; 48,56Sn (табл. 3). Уровень ЕМе в условиях данного эксперимента значительно ниже, чем значение энергии активации при испарении чистых компонентов сплава, кДж/моль: 160Sb; 150Рb; 169Sn, в температурном диапазоне 823-1073 К и при давлении 13,3 Па [14, 17]. Это означает, что возгонка растворенных компонентов сплава играет важную роль в определении общей скорости реакции испарения. Для точного расчета скорости испарения, как правило, необходимо учитывать неидеальные условия в системе. Уравнение Вильсона базируется на концепции локального состава, который обеспечивает адекватное представление о неидеальных смесях [18]. В данном исследовании рассчитанные коэффициенты активности (γ) по уравнению Вильсона для Sb-Pb-Sn-системы представлены в табл. 3. Активности для жидкой фазы показывают отрицательные отклонения от идеальности (γSb,Pb < 1), которые проявляются в уменьшении давления насыщенного пара над реальным расплавом вследствие снижения энергии взаимодействия между полиметаллами εij (Sb-Pb, Sb-Sn, Pb-Sn) по сравнению с монометаллами εii (Sb-Sb, Pb-Pb, Sn-Sn) [14, 17]. Таблица 3 Кинетические константы k (м/с) и энергия активации Е (кДж/моль) Sb-Pb-Sn-сплавов T, К Р, Па Sb/Pb/Sn γSb/Pb/Sn kSb/Pb/Sn ESb/Pb/Sn 823 13,3 12,5/12,5/70 0,999 0,994 1,0 2,849·10-7 0,949·10-7 5,318·10-10 2,159·10-4 1,095·10-8 1,102·10-12 2,853·10-7 -1,238·10-8 -1,10·10-12 46,39/ 47,80/ 48,56 973 7,221·10-7 2,561·10-7 1,442·10-9 3,277·10-3 6,742·10-7 8,118·10-10 7,223·10-7 4,130·10-7 -1,858·10-9 1073 0,999 0,993 1,0 13,826·10-7 4,833·10-7 2,777·10-9 0,013 5,439·10-6 2,360·10-8 13,827·10-7 5,304·10-7 3,147·10-9 133 4,822·10-7 1,864·10-7 2,044·10-9 0,013 5,439·10-6 2,360·10-8 4,822·10-7 1,930·10-7 2,238·10-9 - 1,33 39,667·10-7 13,243·10-7 8,440·10-9 0,013 5,439·10-6 2,360·10-8 39,679·10-7 1,751·10-6 1,314·10-8 13,3 30/5/65 0,990 0,859 1,0 18,614·10-7 2,797·10-7 2,171·10-9 0,031 1,822·10-6 2,045·10-8 1,862·10-6 3,285·10-7 2,429·10-9 50/10/40 0,990 0,861 1,0 16,241·10-7 3,476·10-7 1,392·10-9 0,052 3,773·10-6 1,258·10-8 16,241·10-7 3,829·10-7 1,565·10-9 70/15/15 0,989 0,862 1,0 10,877·10-7 2,449·10-7 0,680·10-9 0,073 5,666·10-6 4,719·10-9 10,877·10-7 2,560·10-7 0,794·10-9 Ранее упоминалось, что kМе можно определить экспериментально по изменению концентрации металла со временем переработки. Кроме того, можно рассчитать для заданной температуры, химического состава расплава и термодинамических параметров, определенных по уравнению (7). Исходя из этого коэффициент массопереноса в жидкой фазе можно рассчитать по уравнению (6) (см. табл. 3). Показано, что значение общего коэффициента массопереноса kМе меньше, чем коэффициент скорости испарения при тех же условиях (за исключением cвинца и олова при высоком давлении, низких температуре и содержании в сплаве). Кроме того, значения общего коэффициента массопереноса kМе сопоставимы с коэффициентами массопереноса в жидкой фазе (кроме олова при низких температурах). Таким образом, скорость испарения легко возгоняемых сурьмы и свинца из Sb-Pb-Sn-сплава в основном контролируется массопереносом в жидкой фазе при данных условиях эксперимента. Заключение На основании проведенного исследования можно сделать следующие выводы: 1. Процесс испарения сурьмы и свинца из состава Sb-Pb-Sn-сплава при температуре 823-1073 К и давлении 1,33-133 Па описывается кинетическими уравнениями первого порядка, что предполагает наличие пропорциональной зависимости скорости испарения металла от его концентрации в расплаве. 2. Зависимость остаточной концентрации металлов в логарифмическом выражении от продолжительности процесса описывается полиномами первой степени и выражается линейной функцией, где константу скорости испарения можно определить графическим методом по наклону прямой. 3. Повышение температуры свыше 823 К способствует возрастанию константы скорости испарения kМе компонентов Sb-Pb-Sn-сплава. Снижение давления в системе менее 133 Па способствует возгонке сурьмы, свинца и олова. 4. При расчете активностей компонентов Sb-Pb-Sn-сплава система демонстрирует отрицательные отклонения от закона Рауля на основе уравнения Вильсона (γSb,Pb < 1) и, следовательно, уменьшение давления насыщенного пара при данной температуре. 5. Сравнение общей константы скорости испарения kМе с коэффициентами скорости испарения и массопереноса в жидкой фазе показывает, что скорость испарения легколетучих сурьмы и свинца из расплавов Sb-Pb-Sn в основном определяется массопереносом в жидкой фазе вследствие того, что значение коэффициента переноса уменьшается, а сопротивление массопереносу возрастает.

Об авторах

А. А Королев

АО «Уралэлектромедь»

С. А Краюхин

АО «Уралэлектромедь»

Г. И Мальцев

АО «Уралэлектромедь»

Список литературы

  1. Xiao J., Li J., Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy // Journal of Hazardous Materials. -2017. - Vol. 338. - P. 124-131.
  2. Zhang L., Xu Z. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash // Journal of Hazardous Materials. - 2016. - Vol. 312. - P. 28-36.
  3. Jia G.-b., Yang B., Liu D.-С. Deeply removing lead from Pb-Sn alloy with vacuum distillation // Transactions of Nonferrous Metals Society of China. - 2013. - Vol. 23, № 6. - P. 1822-1831.
  4. Process optimization for vacuum distillation of Sn-Sb alloy by response surface methodology / A. Wang, Y. Li, B. Yang, B. Xu, L. Kong, D. Liu // Vacuum. - 2014. - Vol. 109. - P. 127-134.
  5. Bolzoni L., Ruiz-Navas E.M., Gordo E. Quantifying the properties of low-cost powder metallurgy titanium alloys // Materials Science and Engineering: A. - 2017. - Vol. 687. - P. 47-53.
  6. Metallurgical and mechanical examinations of molybdenum/graphite joints by vacuum arc pressure brazing using Ti-Zr filler materials / L. Dong, W. Chen, L. Hou, J. Wang, J. Song // Journal of Materials Processing Technology. - 2017. - Vol. 249. - P. 39-45.
  7. Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum / F. Martín, C. García, Y. Blanco, M.L. Rodriguez-Mendez // Materials Science and Engineering: A. - 2015. - Vol. 642. - P. 360-365.
  8. Experimental investigation and modelling of phase equilibria for the Ag-Cu-Pb system in vacuum distillation / W.L. Jiang, C. Zhang, N. Xu, B. Yang, B.Q. Xu, D.C. Liu, H.W. Yang // Fluid Phase Equilibria. - 2016. - Vol. 417. - P. 19-24.
  9. Application of MIVM for Pb-Sn system in vacuum distillation / L.X. Kong, Y.F. Li, B. Yang, B.Q. Xu, H.W. Yang, G.B. Jia // Journal of Vacuum Science and Technology. - 2012. - Vol. 32. - P. 1129-1135.
  10. Thermodynamics of removing impurities from crude lead by vacuum distillation refining / X.F. Kong, B. Yang, H. Xiong, L.X. Kong, D.C. Liu, B.Q. Xu // Transactions of Nonferrous Metals Society of China. - 2014. - Vol. 24. - P. 1946-1950.
  11. Yang H.W. Calculation of phase equilibrium in vacuum distillation by molecular interaction volume model / H.W. Yang, B.Q. Xu, B. Yang, W.H. Ma, D.P. Tao // Fluid Phase Equilibria. - 2012. - Vol. 341. - P. 78-81.
  12. Thirunavukarasu G., Chatterjee S., Kundu S. Scope for improved properties of dissimilar joints of ferrous and non-ferrous metals // Transactions of Nonferrous Metals Society of China. - 2017. - Vol. 27, iss. 7. - P. 1517-1529.
  13. Klippenstein S.J. From theoretical reaction dynamics to chemical modeling of combustion // Proceedings of the Combustion Institute. - 2017. - Vol. 36, iss. 1. - P. 77-111.
  14. Modeling of distillation processes / еds. E.Y. Kenig, S. Blagov // Distillation. Fundamentals and Principles / еds. A. Gorak, E. Sorensen. - Academic Press, 2014. - Р. 383-436.
  15. Separation of boron and phosphorus from Cu-alloyed metallurgical grade silicon by CaO-SiO2-CaCl2 slag treatment / L. Huang, H. Lai, C. Gan, H. Xiong, X. Luo // Separation and Purification Technology. - 2016. - Vol. 170. - P. 408-416.
  16. Jaeger W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries // Nuclear Engineering and Design. - 2017. - Vol. 319. - P. 17-27.
  17. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ: учеб. пособие. - М.: Аргамак-Медиа, 2017. - 480 с.
  18. Wilson G.M. Vapor-liquid equilibrium. XI: A new expression for the excess free energy of mixing // J. Am. Chem. Soc. - 1964. - Vol. 86. - P. 127-130.

Статистика

Просмотры

Аннотация - 84

PDF (Russian) - 91

Ссылки

  • Ссылки не определены.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах