Расчетное обоснование эффективных схем усиления фундаментов мелкого заложения контурным армированием жесткими армоэлементами

Аннотация


Эффективным способом усиления фундаментов мелкого заложения является контурное армирование - выполнение в грунтовом массиве вдоль граней фундамента ряда вертикальных элементов. Внедрение армоэлементов, выполняющих функцию «компрессионной стенки», приводит к заметному снижению деформаций и повышению несущей способности основания усиливаемых фундаментов. В качестве армирующих элементов могут использоваться различные конструкции и материалы с прочностными свойствами, превышающими соответствующие свойства грунта. Положительно зарекомендован способ формирования армоэлементов пакетным высоконапорным инъецированием. Сущность способа заключается в одновременной подаче цементно-песчаного раствора через несколько источников, установленных в ряд, под давлением, превышающим структурную прочность грунта, и последующим созданием в грунтовом массиве плоских вертикальных инъекционных тел условно прямоугольной формы. Важным вопросом при контурном армировании является определение оптимальных параметров инъецирования - количества и шага расположения инъекционных тел в плане и по глубине, что может привести к существенному уменьшению трудоемкости и стоимости работ по усилению. Для определения рациональных параметров контурного армирования фундаментов мелкого заложения инъекционными телами был выполнен комплекс численных экспериментов по расчету напряженно-деформируемого состояния грунтового основания при разных схемах усиления в программном комплексе MIDAS GTS NX 2019. Расчеты проводились в 3D постановке с учетом нелинейного характера работы грунта. По результатам расчета были определены наиболее эффективные схемы расположения армоэлементов при усилении фундаментов мелкого заложения контурным армированием инъекционными телами и обоснована технология последовательного проведения работ по усилению с поэтапным увеличением количества армоэлементов.

Полный текст

Введение Эффективным способом усиления фундаментов мелкого заложения является контурное армирование - выполнение в грунтовом массиве вдоль граней фундамента ряда вертикальных элементов (Л.В. Нуждин и др. [1, 2]). Внедрение армоэлементов, выполняющих функцию «компрессионной стенки», приводит к существенному снижению деформаций и повышению несущей способности основания усиливаемых фундаментов, что доказано исследованиями Л.В. Нуждина, И.Т. Мирсаяпова, В.И. Клевеко, Р.А. Мангушева, Н.С. Никифоровой и др. [3-8]. В качестве армирующих элементов могут использоваться различные конструкции и материалы с прочностными свойствами, превышающими соответствующие свойства грунта (М.Н. Ибрагимов, А.Б. Пономарев, В.Г. Офрихтер, М.Л Нуждин. и др. [9-15]). Положительно зарекомендован способ формирования армоэлементов пакетным высоконапорным инъецированием. Сущность способа заключается в одновременной подаче цементно-песчаного раствора через несколько источников, установленных в ряд, под давлением, превышающим структурную прочность, грунта и последующим формированием в грунтовом массиве плоских инъекционных тел условно прямоугольной формы (М.Л. Нуждин и др. [16-20]). Важным вопросом при контурном армировании является определение оптимальных параметров инъецирования - количества и шага расположения инъекционных тел в плане и по глубине, что может привести к существенному уменьшению трудоемкости и стоимости работ по усилению (Р.В. Мельников, Я.А. Пронозин, А.А. Тарасенко [21], А.В. Лубягин, В.К. Федоров [22]. Методика и постановка задачи Для определения рациональных параметров контурного армирования фундаментов мелкого заложения инъекционными телами был выполнен комплекс численных экспериментов по расчету напряженно-деформируемого состояния грунтового основания при разных схемах усиления. Численное моделирование осуществлялось в программном комплексе MIDAS GTS NX 2019. Расчеты проводились в 3D постановке с учетом нелинейного характера работы грунта. В качестве примера рассматривался фундамент мелкого заложения существующего здания, претерпевшего значительные деформации. Размеры подошвы фундамента в плане 2,4 ´ 2,4 м, давление по подошве P = 210 кПа. Грунтовое основание до глубины 10 м сложено суглинком легким, пылеватым, текучепластичным, непросадочным, незасоленным: r = 1,95 г/см3, j = 14°, С = 15 кПа, Е = 4,5 МПа. Осадка фундамента в процессе возведения здания достигла 156 мм, что существенно превышает предельное значение, рекомендованное СП 22.13330.2016, - 10 см. Армоэлементы в расчете были приняты прямоугольной формы с размерами 0,5 ´ 0,2 м, высотой 0,7 м; расстояние до граней фундамента 25 см; зазор между элементами по глубине 50 и 75 мм в плане; физико-механические характеристики: γ = 20 кН/м3, ν = 0,2, Е = 100 МПа. Материал фундамента - тяжелый бетон. Были рассмотрены варианты со сплошным и прерывистым контурным армированием вдоль всего периметра и c двух противоположных сторон фундамента. Для каждого варианта рассчитывались случаи пяти-, четырех-, трех-, двух- и одноуровневого армирования, на глубину 1,5b; 1,2b; 0,9b; 0,6b; 0,3b соответственно (рис. 1). Расчетная схема в ПК MIDAS состояла из сетки гексаэдральных и тетраэдрических элементов, включающей 26 070 конечных элементов и 13 908 узлов с 42 231 степенью свободы. Габаритные размеры расчетной области были приняты 13,5 ´ 13,5 ´ 15 м. Расчеты фундамента, усиленного контурным армированием, выполнялись последовательно в три стадии: расчет напряженно-деформированного состояния основания от собственного веса грунта; после устройства фундамента и внедрения элементов усиления; расчет усиленного основания после приложения нагрузки. Результаты расчетов и их анализ Значение осадки фундамента на естественном (не усиленном) основании, рассчитанное в ПК MIDAS с использованием упругопластической модели Мора - Кулона, составило 144 мм, что близко к величине осадки реального фундамента. Результаты расчетов фундамента на усиленном основании приведены в таблице, изолинии вертикальных перемещений грунтового основания, усиленного по характерным схемам, - на рис. 2. «20/5» «20/4» «20/3» «20/2» «20/1» «12/5» «12/4» «12/3» «12/2» «12/1» «10/5» «10/4» «10/3» «10/2» «10/1» «6/5» «6/4» «6/3» «6/2» «6/1» Рис. 1. Схемы расположения армоэлементов при усилении фундамента мелкого заложения контурным армированием (в обозначении схем: первая цифра - количество столбцов, вторая - количество уровней армоэлементов по глубине) Fig. 1. Arrangement schemes of reinforcement elements when strengthening shallow foundation with contour reinforcement (in the designation of schemes: the first number - the number of columns, the second - the number of levels of reinforcing elements in depth) Эффективность разных схем усиления наглядно показывает коэффициент приведенного расхода материала КПРМ (табл. 1), равный отношению объема используемых армоэлементов к разности осадок фундамента на естественном основании и после усиления, численно тождественный объему армоэлементов в кубических метрах, необходимому для снижения осадки на 1 см. Так, например, как и следовало ожидать, минимальное значение осадки фундамента достигается максимальным армированием (сплошное 5-уровневое по глубине «20/5») - S = 110 мм, что на 34 мм или на 24 % меньше осадки фундамента на естественном основании. Однако, прерывистое армирование вдоль двух противоположных сторон фундамента одноуровневое по глубине («6/1») позволяет уменьшить осадку на 8 мм, т.е. на 6 %, при этом объем используемых армоэлементов отличается в 17 раз - 0,42 против 7,00 м3 в первом случае. При усилении по схеме «20/5» коэффициент приведенного расход материала КПРМ = 2,06, а по схеме «6/1» КПРМ = 0,53, т.е. удельная эффективность усиления при максимальном армировании ниже в 4 раза. Результаты расчетов фундамента мелкого заложения, усиленного контурным армированием с расположением армоэлементов по разным схемам The results of calculations of the shallow foundation, reinforced hard elements with different layouts «20/5» «20/4» «20/3» «20/2» «20/1» S = 110 мм DS = 34 мм V = 7,00 м3 КПРМ = 2,06 S = 112 мм DS = 32 мм V = 5,60 м3 КПРМ = 1,75 S = 114 мм DS = 30 мм V = 4,20 м3 КПРМ = 1,40 S = 116 мм DS = 28 мм V = 2,80 м3 КПРМ = 1,00 S = 122 мм DS = 22 мм V = 1,40 м3 КПРМ = 0,64 «12/5» «12/4» «12/3» «12/2» «12/1» S = 121 мм DS = 23 мм V = 4,20 м3 КПРМ = 1,83 S = 123 мм DS = 21 мм V = 3,36 м3 КПРМ = 1,60 S = 123 мм DS = 21 мм V = 2,52 м3 КПРМ = 1,20 S = 124 мм DS = 20 мм V = 1,68 м3 КПРМ = 0,84 S = 128 мм DS = 16 мм V = 0,84 м3 КПРМ = 0,53 «10/5» «10/4» «10/3» «10/2» «10/1» S = 126 мм DS = 18 мм V = 3,50 м3 КПРМ = 1,94 S = 127 мм DS = 17 мм V = 2,80 м3 КПРМ = 1,65 S = 128 мм DS = 16 мм V = 2,10 м3 КПРМ = 1,31 S = 129 мм DS = 15 мм V = 1,40 м3 КПРМ = 0,93 S = 132 мм DS = 12 мм V = 0,70 м3 КПРМ = 0,58 «6/5» «6/4» «6/3» «6/2» «6/1» S = 133 мм DS = 11 мм V = 2,10 м3 КПРМ = 1,91 S = 134 мм DS = 10 мм V = 1,68 м3 КПРМ = 1,68 S = 134 мм DS = 10 мм V = 1,26 м3 КПРМ = 1,26 S = 134 мм DS = 10 мм V = 0,84 м3 КПРМ = 0,84 S = 136 мм DS = 8 мм V = 0,42 м3 КПРМ = 0,53 Примечание: S - осадка фундамента на усиленном основании, DS - разность осадок фундамента на естественном и усиленном основании, V - объем армоэлементов, КПРМ - коэффициент приведенного расхода материала, равный отношению объема V армоэлементов к разности осадок DS. Прерывистое контурное армирование рентабельнее сплошного. Коэффициент приведенного расхода материала при прерывистом контурном 5-уровневом армировании вдоль всего периметра фундамента («12/5») составляет КПРМ = 1,83 и при одноуровневом («12/1») КПРМ = 0,53. При сплошном 5-уровневом армировании коэффициент приведенного расхода материала равен КПРМ = 2,06 и при сплошном одноуровневом КПРМ = 0,64. Сплошное армирование вдоль двух противоположных сторон имеет также большую удельную эффективность по сравнению со сплошным армированием вдоль всего периметра фундамента - КПРМ = 1,94 и КПРМ = 0,58 соответственно. Анализируя значения коэффициента КПРМ, справедливо утверждать, что во всех случаях увеличение как количества столбцов армоэлементов, так и уровней по глубине приводит к уменьшению деформаций грунтового основания, но при этом снижение осадки от схемы с меньшим к схеме с большим армированием непропорционально росту объема используемых армоэлементов, т.е. удельная эффективность усиления снижается. Сравнение деформаций грунтового основания, усиленного армированием, по схемам c одинаковым количеством уровней позволяет сделать вывод о практически прямой зависимости значения осадки от количества армоэлементов в плане при примерно равных значениях КПРМ. Например, при 5-уровневом армировании разность осадок фундамента на естественном основании и на основании, усиленном прерывистым контурным армированием с двух противоположных сторон («6/5»), составляет 11 мм, при сплошном контурном армировании с двух противоположных сторон («10/5») - 18 мм, при прерывистом с четырех сторон («12/5») - 23 мм и при сплошном контурном армировании с четырех сторон фундамента («20/5») - 34 мм. Значение КПРМ при этом находится в пределах от 1,83 до 2,06, и, что характерно, наименьшее значение КПРМ = 1,83 соответствует схеме прерывистого контурного армирования с четырех сторон фундамента («12/5»). Последнее справедливо также для вариантов с четырех-, трех-, двух- и одноуровневым армированием. а б в г д е Рис. 2. Изолинии вертикальных перемещений грунтового основания фундамента при усилении контурным армированием: а, б - сплошным 5-уровневым («20/5») и одноуровневым; в, г - прерывистым 5-уровневым («12/5») и одноуровневым («12/1»); прерывистым, вдоль двух противоположных сторон фундамента: д, е - 5-уровневым («6/5») и одноуровневым («6/1») Fig. 2. Isolines of vertical displacements of the foundation soil base when reinforced with contour reinforcement: а, б - solid 5-level («20/5») and one-level; в, г - intermittent 5-level («12/5») and one-level («12/1»); discontinuous, along two opposite sides of the foundation: д, е - 5-level («6/5») and one-level («6/1») Так как выполнение дополнительных уровней армоэлементов «сверху вниз» при усилении реальных фундаментов крайне затруднительно [22], глубину армирования необходимо назначать на стадии проектирования. Для определения эффективной глубины контурного армирования было выполнено сравнение деформационных изолиний грунтового основания фундамента без усиления и после него. Расчет проводился для всех схем, в качестве примера на рис. 3 представлены разности деформаций грунтового основания до и после усиления сплошным контурным армированием вдоль всего периметра для вариантов с разным количеством уровней по глубине. а б в г д Рис. 3. Изолинии разностей деформаций грунтового основания до и после усиления: а - при одноуровневом («20/1»), б - двух («20/2»), в - трех («20/3»), г - четырех («20/4») и д - пятиуровневом («20/5») сплошном армировании Fig. 3. Isolines of differences in soil base deformations before and after reinforcement: а - with a single («20/1»), б - two («20/2»), в - three («20/3»), г - four («20/4») and д - five-level («20/5») solid reinforcement Рис. 3 показывает, что контурное армирование приводит к существенному изменению деформационного состояния грунтового массива - зона разности деформаций основания до и после усиления имеет клиновидную форму и распространяется на глубину 0,81b, 0,86b, 0,90b, 0,91b и 0,97b при 1-, 2-, 3-, 4- и 5-уровневом армировании соответственно. При 1- и 2-уровневом армировании граница зоны располагается ниже (0,3b и 0,60b), при 3-уровневом практически совпадает (0,9b), при 4-уровневом выше (1,2b), а при пяти уровнях существенно выше глубины армирования (1,5b). При устройстве 2-го, 3-го и 4-го уровней отчетливо наблюдается уменьшение боковых деформаций в пределах и за контуром усиления. Элементы 5-го уровня способствуют некоторому увеличению главным образом боковых зон трансформированного состояния грунтового массива, однако они при этом не распространяются ниже элементов 4-го уровня. Следовательно, наиболее эффективны схемы с 3- и 4-уровневым армированием, что соответствует глубине 0,9b…1,2b от подошвы фундамента. Это утверждение справедливо для всех схем размещения армоэлементов в плане при контурном армировании фундаментов мелкого заложения. Выводы На основе выполненного авторами численного моделирования по прогнозу напряженно-деформируемого состояния грунтового основания при разных схемах усиления в программном комплексе MIDAS GTS NX 2019 можно сделать следующие выводы: 1. Усиление фундаментов мелкого заложения контурным армированием жесткими армоэлементами трансформирует напряженно-деформированное состояние грунтового массива; изменение схемы усиления с увеличением количества армоэлементов уменьшает напряжения и вертикальные деформации. При прерывистом контурном армировании фундаментов мелкого заложения снижение осадки может достигать 16 % относительно осадки на неусиленном основании, при сплошном контурном армировании осадка может быть снижена на 24 %. 2. К максимальному уменьшению деформаций грунтового основания приводит усиление наибольшим количеством армоэлементов. Однако любая схема армирования снижает осадку, при этом в большинстве случаев коэффициент приведенного расхода материала КПРМ растет вместе с увеличением объема используемых армоэлементов. 3. Прерывистое контурное армирование рентабельнее сплошного, коэффициент приведенного расхода материала КПРМ при армировании участков одинаковой длины в первом случае меньше. Прерывистое контурное армирование вдоль всего периметра фундаментов эффективнее усиления сплошным армированием вдоль двух противоположных сторон - деформации основания и значение коэффициента приведенного расхода КПРМ во втором случае выше. 4. Исходя из вышесказанного усиление фундаментов мелкого заложения жесткими армоэлементами - инъекционным телами - целесообразно выполнять поэтапно, увеличивая количество армоэлементов на каждом этапе и соответственно меняя схему армирования - от прерывистого контурного армирования вдоль противоположных сторон к сплошному контурному армированию вдоль периметра всего фундамента. Необходимость проведения последующих работ должна определяться по результатам мониторинга за динамикой развития деформаций грунтового основания в процессе и после завершения каждого этапа. 5. Оптимальная глубина армирования грунтового основания фундаментов мелкого заложения составляет 0,9b…1,2b (где b - ширина подошвы фундамента). Дальнейшее направление исследований авторов будет связано с созданием общих принципов подхода к усилению фундаментов пакетным высоконапорным инъецированием на основе результатов математического моделирования. Благодарности Авторы статьи благодарят сотрудников кафедра «Геотехника» Тюменского индустриального университета - кандидата технических наук, доцента Р.В. Мельникова и кандидата технических наук, доцента Д.В. Рачкова за ценные советы и рекомендации при выполнении исследований.

Об авторах

М. Л Нуждин

Новосибирский государственный архитектурно-строительный университет

А. Б Пономарев

Санкт-Петербургский горный университет

Список литературы

  1. Нуждин Л.В., Кузнецов А.А. Армирование грунтов основания вертикальными стержнями // Труды международного семинара по механике грунтов, фундаментостроению и транспортным сооружениям. - М., 2000. - С. 204-206.
  2. Nuzhdin L.V., Skvortsov E.P. Analyses vibration foundation, reinforcement contour armoring ground basis, finite elements methods // Proceedings of International Geotechnical Symposium. - Astana, 2005. - P. 264-267.
  3. Армирование грунтового основания 16-ти этажного жилого дома жесткими вертикальными стержнями / Л.В. Нуждин, В.П. Писаненко, П.А. Гензе, А.А. Кузнецов, А.М. Караулов, М.Л. Нуждин, В.А. Ступников // Известия вузов «Строительство». - 2002. - № 3. - С. 141-146.
  4. Справочник геотехника. Основания, фундаменты и подземные сооружения: издание второе, дополненное и переработанное / под общ. ред. В.А. Ильичева и Р.А. Мангушева. - М., 2016. - 1040 с.
  5. Мирсаяпов И.Т., Шарафутдинов Р.А. Напряженно-деформированное состояние грунтового основания, армированного вертикальными и горизонтальными элементами // Известия КГАСУ. - 2017. - № 1 (39). - С. 153-158.
  6. Мирсаяпов И.Т., Попов О.А. Расчет осадки армированных вертикальными стержневыми элементами грунтовых оснований // Фундаменты глубокого заложения и проблемы освоения подземного пространства: тр. междунар. конф. - Пермь, 2011. - С. 407-413.
  7. Богданова Е.О., Клевеко В.И. Компьютерное моделирование развития осадок здания на основании, усиленном вертикальным армированием // Академический вестник УралНИИпроект РААСН. - 2017. - № 4. - С. 73-77.
  8. Мангушев Р.А., Никифорова Н.С. Технологические осадки зданий и сооружений в зоне влияния подземного строительства. - М.: АСВ, 2017. - 168 с.
  9. Ибрагимов М.Н., Семкин В.В., Шапошников А.В. Закрепление грунтов в подземном строительстве. - М.: АСВ, 2022. - 434 с.
  10. Малинин А.Г. Струйная цементация грунтов. - М.: Стройиздат, 2010. - 226 с.
  11. Ramya M., Jeyapriya S. Behaviourial Study on Geopolymer Column Soil // Ground Improvement Techniques and Geosynthetics. IGS 2016. - Singapore, Springer, 2019. - Vol. 2. - P. 1-9.
  12. Kumar P. Bearing Capacity of Strip Footing on Clay Soil Reinforced with Metal Strips and with Anchors // Ground Improvement Techniques and Geosynthetics. IGS 2016. - Singapore, Springer, 2019. - Vol. 2. - P. 77-84.
  13. Croce P., Flora A., Modoni G. Jet Grouting. Technology, design and control. - L.: CRC Press, 2014. - 284 p.
  14. Пономарев А.Б., Офрихтер В.Г. Анализ и проблемы исследований геосинтетических материалов в России // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2013. - № 2. - С. 68-73.
  15. Кузнецова А.С., Офрихтер В.Г., Пономарев А.Б. Исследование прочностных характеристик песка, армированного дискретными волокнами полипропилена // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2012. - № 1. - С. 44-55.
  16. Нуждин М.Л. Экспериментальные исследования усиления грунтового основания свайных фундаментов армированием жесткими включениями // Вестник ПНИПУ. Строительство и архитектура. - 2019. - Т. 10, № 3. - С. 5-15. doi: 10.15593/2224-9826/2019.3.01
  17. Nuzhdin M.L., Nuzhdin L.V., Ponomaryov A.B. Experimental studies on model pile foundations reinforced by hard inclusions // Geotechnics for Sustainable Infrastructure Development: Lecture Notes in Civil Engineering. - Singapore: Springer, 2019. - Vol. 62. - P. 193-197. doi: 10.1007/978-981-15-2184-3_24
  18. Нуждин М.Л., Нуждин Л.В. Экспериментальное подтверждение возможности создания в грунтовом массиве инъекционных тел установленной формы // Известия вузов. Строительство. - 2019. - № 10. - С. 101-112. doi: 10.32683/0536-1052-2019-730-10-101-112
  19. Nuzhdin M.L., Nuzhdin L.V. Strengthening of supporting ground of a damaged building by high-pressure injection of a moving cement-sand mixture // Proceedings of the 17th African Regional Conference on Soil Mechanics and Geotechnical Engineering (7-9 October 2019, Cape Town). - University of Pretoria, Pretoria, South Africa, 2019. - P. 785-788.
  20. Пронозин Я.А., Кайгородов М.Д. Регулирование геометрического положения зданий, в условиях сильносжимаемых грунтовых оснований // Механика грунтов в геотехнике и фундаментостроении: материалы междунар. науч.-техн. конф. - Новочеркасск, 2018. - С. 462-467.
  21. Мельников Р.В., Пронозин Я.А., Тарасенко А.А. Численное определение областей грунта для исправления крена здания // Вестник Сибирского государственного университета путей сообщения. - 2021. - № 4 (59). doi: 10.52170/1815-9265_2021_59_108
  22. Лубягин А.В., Федоров В.К. Модификация грунтовых оснований методом компенсационного нагнетания // Основания, фундаменты и механика грунтов. - 2015. - № 2. - С. 28-31.

Статистика

Просмотры

Аннотация - 170

PDF (Russian) - 274

Ссылки

  • Ссылки не определены.

© Нуждин М.Л., Пономарев А.Б., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах