ВЛИЯНИЕ ГОРИЗОНТАЛЬНОЙ ПОДЗЕМНОЙ ВЫРАБОТКИ, ОРИЕНТИРОВАННОЙ ПАРАЛЛЕЛЬНО ФРОНТУ ОДНОРОДНОГО ОТКОСА, НА ЕГО УСТОЙЧИВОСТЬ

  • Авторы: Богомолов А.Н1,2, Абрамов Г.А2, Богомолова О.А2, Пристансков А.А2, Ермаков О.В2
  • Учреждения:
    1. Пермский национальный исследовательский политехнический университет
    2. Волгоградский государственный технический университет
  • Выпуск: Том 9, № 1 (2018)
  • Страницы: 82-92
  • Раздел: Статьи
  • URL: https://ered.pstu.ru/index.php/CG/article/view/852
  • DOI: https://doi.org/10.15593/2224-9826/2018.1.08
  • Цитировать

Аннотация


Приведены результаты анализа численного моделирования трансформации напряженного состояния однородного откоса при его подработке горизонтальными выработками квадратного и круглого сечений, ориентированных параллельно фронту откоса. Расчеты выполнены при помощи компьютерных программ, в которых для анализа напряженного состояния грунтового массива формализован метод конечных элементов, решение смешанной задачи теории пластичности и теории упругости - для построения пластических областей (областей разрушения) - и методика построения наиболее вероятной поверхности скольжения, которая основана на анализе напряженного состояния объекта. Установлено, что подработка однородного откоса подземной выработкой, при всех прочих равных условиях, влечет за собой существенное перераспределение напряжений в приоткосном массиве и, как следствие, изменение положения и формы наиболее вероятной поверхности скольжения и величины коэффициента запаса устойчивости. Для рассмотренных в работе примеров разница величин коэффициентов запаса составляет от 13 до 25 %. На процесс перераспределения напряжений в грунтовом массиве значительное влияние оказывают форма и размеры выработки, ее положение и ориентация в приоткосной области, геометрические параметры откоса. При расчете устойчивости подработанных откосов следует одновременно проводить проверку отсутствия зон разрушения на контуре выработок, чтобы обеспечить возможность их безопасной эксплуатации.

Полный текст

Известно, что проведение подземных строительных работ, связанных с образованием в грунтовых массивах полостей различного объема и формы (тоннели, подземные хранилища и т.д.), а также разработка полезных ископаемых закрытым способом существенным образом меняют напряженно-деформированное состояние (НДС) вмещающего грунта в окрестностях производства работ. Если такие работы производятся в грунтовых массивах, представляющих собой откосы и склоны, то данное обстоятельство непременно должно сказаться и на их общей устойчивости. Анализу напряженно-деформированного состояния грунтовых массивов, наведенного образованием полостей, посвящен целый ряд работ. Так, в работах [1-4] исследуются вопросы, связанные с изучением НДС откосов карьеров, подработанных подземными выработками (плоская постановка). На рис. 1, 2 показаны изолинии напряжений в откосах, подработанных подземными выработками. Из рисунков отчетливо видно, что вокруг выработок поле напряжений существенно трансформируется, наблюдается значительная их концентрация. В работах [5-7] рассмотрены вопросы, связанные с изучением закономерностей распределения напряжений вокруг подземных выработок различной формы и размеров. Установлено, что форма, размер выработки и глубина ее заложения существенным образом влияют на картину поля напряжений во вмещающем объеме скального грунта. Однако в этих работах не анализируется влияние отмеченного факта на устойчивость карьерных откосов и грунтовых массивов. а в б г Рис. 1. Изолинии главных нормальных напряжений σ1 (а, б) и σ3 (в, г) до проведения горных работ (а, в) и после (б, г) соответственно [1] Fig. 1. Isolines of main normal stresses σ1 (a, b) and σ3 (c, d) before mining operations (a, c) and after them (b, d), respectively (cited according to [1]) В работе [4] рассматривается вопрос об определении предельной высоты подработанного откоса подземными выработками при действии объемных сил. Здесь приведены формулы, позволяющие, по мнению авторов, определить предельную высоту подработанного карьерного откоса. Для использования этих формул «необходимо задаться физико-механическими свойствами пород с необходимым запаса устойчивости» [4]. (1) где α - угол откоса; ν - коэффициент Пуассона; H - высота откоса, м; β - угол наклона элементарной площадки линии скольжения, град; c - сцепление пород в массиве, Па; φ - угол внутреннего трения, град; P - сила тяжести, Н; N - нормальная сила, Н; T - касательная сила, Н [4]. Однако в формулу (1) и в ее экспликацию не входят параметры выработки: ее размеры, форма, положение в породном массиве и т.д. В статье они не обсуждаются и не отражены в расчетной схеме (рис. 3, a). При этом вычисление величины предельной высоты устойчивого подработанного откоса выполнено без учета трансформации поля напряжений при возникновении подземной выработки. В результате вычислений, выполненных авторами при помощи формулы (1), построены графики, позволяющие определить предельное значение высоты подработанного карьерного откоса, один из которых в качестве примера приведен на рис. 3, б. а г б д в е Рис. 2. Распределение напряжений в прибортовом массиве пород до (а, б, в) и после (г, д, е) образования камеры: а, г - вертикальные σz; б, д - горизонтальные σx; в, г - касательные τzx [2] Fig. 2. Stress distribution in adjacent rock mass before (a, b, c) and after (d, e, f) formation of a chamber: a, d - vertical σz; b, e - horizontal σx; c, f - shear τzx (cited according to [2]) Рис. 3. Схема действия сил по элементарной площадке (а); график зависимости высоты устойчивого откоса подработанного борта от его угла наклона при c = 0,3МПа, φ = 28о, γ = 2500 кг/м3 без учета тектонических сил (б) [4] Fig. 3. The action of forces along the elementary area (a); the dependence graph between the height of a stable slope of the undermined board and its angle at c = 0,3 MPa, φ = 28о, γ = 2500 kg/m3 without regard to tectonic forces (b) (cited according to [4]) Анализ кривых, приведенных на рис. 3, б, показывает, что подработка откоса практически не оказывает влияния на величину коэффициента запаса устойчивости при условии, что α ≥ 40о, так как кривые, соответствующие величинам коэффициента запаса устойчивости , практически сливаются при данных значениях угла α. В свою очередь при и предельная высота подработанного откоса оказывается меньшей, чем при и . Но очевидным является утверждение о том, что чем больше величина проектного (заданного) коэффициента запаса устойчивости откоса, тем меньше при всех прочих равных условиях должна быть его высота. Поэтому вывод, сделанный на основании анализа кривых, изображенных на рис. 3, б, не может не настораживать. Для установления качественных и количественных данных о влиянии подземной выработки на общую устойчивость однородного подработанного откоса выполнены численные эксперименты при помощи компьютерных программ [8, 9]. На рис. 4 приведены размеры расчетной схемы однородного откоса, подработанного выработкой квадратного сечения, а также показана картина ее дискретизации на конечные элементы. Рис. 4. Размеры расчетной схемы однородного откоса, подработанного выработкой квадратного сечения (а), дискретизация расчетной схемы на конечные элементы (б) Fig. 4. The size of the design scheme of a homogeneous slope undermined with an excavation having a square cross-section (a), sampling of design scheme into finite elements (b) Угол откоса β при выполнении вычислений принят равным 45о, высота откоса Н составляет 200 м, а физико-механические свойства грунта соответствуют средним значениям для аргиллитов. При этом численные значения удельного сцепления и угла внутреннего трения породы определены при помощи известных выражений, предложенных проф. В.В. Соколовским [10, 11], связывающих соответствующие сдвиговые характеристики со значениями пределов прочности при растяжении Rр и сжатии Rсж для данной породы: (2) (3) Величина коэффициента бокового давления определена выражением (4) На рис. 5 изображены картины изолиний напряжений, действующих в окрестности выработки, и областей пластических деформаций, построенных на основе решения смешанной задачи теории упругости и теории пластичности грунта [12] при расстоянии d от выработки до подошвы откоса, равном 0,2Н. а б в г Рис. 5. Картины изолиний горизонтальных σx (а), вертикальных σz (б), касательных τzx (в) напряжений и области пластических деформаций (г) в окрестности выработки квадратного сечения Fig. 5. Isolines of horizontal σx (a), vertical σz (b), τzx tangential (c) stresses and plastic strains (d) around the excavation having a square section Анализ картин напряжений показывает, что наличие подземной выработки в приоткосной области вносит существенную неоднородность в напряженное состояние массива - наблюдается значительная концентрация напряжений в окрестности выработки. Причем горизонтальные σx и касательные τzx напряжения концентрируются вокруг верхнего левого и нижнего правого углов выработки, вертикальные же напряжения σz - по ее боковым граням. Численные значения этих напряжений в несколько раз превышают напряжения, которые наблюдаются в соответствующих точках неподработанного откоса. Области пластических деформаций (зоны разрушения) развиты вдоль верхней и правой граней сечения выработки и в окрестностях ее углов (кроме нижнего левого), которые, как видно из рис. 5, являются концентраторами напряжений. Кроме того, зоны разрушения возникли в области перехода откоса в подошву, что объясняет часто возникающее здесь явление «стреляния» породы. а б в г Рис. 6. Следы наиболее вероятной поверхности скольжения (СНВПС) и зоны разрушения, построенные при расстоянии от выработки до подошвы откоса d = 0,1Н (а), d = 0,2Н (б), d = 0,3Н (в); кривые вида K = f(d/H) (г) для квадратной (1) и круглой (2) формы поперечного сечения выработки Fig. 6. Traces of the most probable sliding surface (SNVPS) and destruction zone built at a distance from the excavation to the slope’s footing d = 0,1 Н (a), d = 0,2 Н (b), d = 0,3 Н (c); curves of the form K = f (d/H) (d) for a square (1) and round (2) shape of the excavation’s cross section На рис. 6 изображены следы наиболее вероятной поверхности скольжения, построенные по методике [12], и кривые вида при различном расстоянии от выработки до подошвы откоса. Анализ данных, приведенных на рис. 6, показывает, что при удалении выработки от подошвы откоса в глубь массива размеры и форма зон разрушения, обрамляющих выработку, практически не меняются, а зоны разрушения, расположенные в месте перехода откоса в подошву, уменьшаются в размерах. След наиболее вероятной поверхности скольжения представляет собой кривую, меняющую знак кривизны (вогнуто-выпуклая кривая), причем это наиболее заметно при d = 0,2Н. Объяснение этому - концентрация напряжений в окрестности выработки, ведь в случае неподработанного откоса знак кривизны этой кривой не меняется. Величина глобального коэффициента запаса устойчивости откоса K непостоянна и меняется при изменении значения d. В рассмотренном случае люфт составляет 13 % (рис. 6, г, кривая 1). 0,70 0,65 0,2 0,1 0,6 0,5 а б 0 0,3 СНВПС K = 1,88 ОПД в г Рис. 7. Картины изолиний вертикальных σz (а), горизонтальных σx (б), касательных τzx (в) напряжений; области пластических деформаций и след наиболее вероятной поверхности скольжения (г) в однородном откосе с углом , ослабленного выработкой поперечного круглого сечения, расположенной на расстоянии d = 0,1Н от подошвы откоса Fig. 7. Isolines of the vertical σz (a), horizontal σx (b), τzx tangential (c) stresses; areas of plastic deformations and a track of the most probable sliding surface (g) in a uniform slope with an angle which is weakened by an excavation having a transverse circular cross-section which is located at a distance d = 0,1 Н from the slope’s footing Аналогичные вычисления выполнены и для однородного откоса с углом сложенного твердыми известняками, который ослаблен подземной выработкой круглого поперечного сечения, ориентированной также параллельно фронту откоса. Графическая интерпретация части полученных результатов приведена на рис. 7. Здесь, как и в предыдущем случае, наблюдаются концентрации напряжений вокруг выработки, а по мере удаления ее в глубь откосного массива происходит изменение величины глобального коэффициента запаса устойчивости, причем разница между его максимальным и минимальным значением составляет более 25 % (рис. 6, г, кривая 2). Выводы 1. Подработка однородного откоса подземной выработкой, ориентированной параллельно его фронту, при всех прочих равных условиях влечет за собой существенное перераспределение напряжений в приоткосном массиве и, как следствие, изменение положения и формы наиболее вероятной поверхности скольжения и величины коэффициента запаса устойчивости K, которое для рассмотренных случаев составляет 13 % и 25 % соответственно. 2. На процесс перераспределения напряжений в массиве значительное влияние оказывают форма и размеры выработки, ее положение в приоткосной области, геометрические параметры откоса. 3. При расчете устойчивости подработанных откосов следует одновременно проводить проверку отсутствия зон разрушения на контуре выработок, чтобы обеспечить возможность их безопасной эксплуатации.

Об авторах

А. Н Богомолов

Пермский национальный исследовательский политехнический университет; Волгоградский государственный технический университет

Г. А Абрамов

Волгоградский государственный технический университет

О. А Богомолова

Волгоградский государственный технический университет

А. А Пристансков

Волгоградский государственный технический университет

О. В Ермаков

Волгоградский государственный технический университет

Список литературы

  1. Мажитов А.М. Оценка влияния подземных горных работ на напряженно-деформированное состояние прикарьерного массива месторождения Камаганское // Актуальные проблемы горного дела. - 2016. - № 1. - С. 30-36.
  2. Абдылдаев Э.К., Салимова Г.Е. Напряженно-деформированное состояние прибортового массива в условиях подработки камерами // Вестник Кыргызско-Российского Славянского университета. Сер.: Науки о земле. - 2008. - Т. 8, № 3. - С. 157-159.
  3. Распределение напряжений в однородном изотропном откосе, ослабленном горизонтальной круглой выработкой, расположенной на уровне его подошвы / А.Н. Богомолов, Г.А. Абрамов, О.А. Богомолова, А.А. Пристансков // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2017. - Т. 8, № 2. - C. 15-26. doi: 10.15593/2224-9826/2017.2.02
  4. Кузнецова Т.С., Мещеряков Ю.Б., Некерова Т.В. Предельная высота подработанного откоса подземными выработками при действии объемных сил // Вестник МГТУ им. Г.И. Носова. - 2009. - № 3. - С. 5-8.
  5. Анализ напряженного состояния грунтового массива, вмещающего подземные пространства различной конфигурации [Электронный ресурс] / А.Н. Богомолов, С.В. Кузнецова, В.Н. Синяков, М.А. Шубин, В.П. Дыба, Г.М. Скибин, Ю.И. Олянский, О.А. Богомолова, А.Н. Ушаков // Интернет-вестник ВолгГАСУ. Сер.: Строительная информатика. - 2012. - Вып. 8 (24). - URL: http://vestnik.vgasu.ru/attachments/2_Bogomolov-2012_8(24).pdf (дата обращения: 10.08.2017).
  6. Определение предельной глубины заложения горизонтальных выработок различного поперечного сечения [Электронный ресурс] / А.Н. Богомолов, О.А. Богомолова, М.А. Шубин, Д.В. Павлов, М.В. Подлинев, А.В. Соловьев // Интернет-вестник ВолгГАСУ. Сер.: Политематическая. - 2013. - Вып. 2(27). - URL: http://vestnik.vgasu.ru/attachments/BogomolovBogomolova ShubinPavlovPodlinevSolovev-2013_2(27).pdf. (дата обращения: 10.08.2017).
  7. Пример определения безопасной глубины заложения горизонтальной выработки сложного сечения / А.Н. Богомолов, О.А. Богомолова, С.Л. Шелудько, А.В. Соловьев // Вестник Волгогр. гос. архит.-строит. ун-та. Сер.: Строительство и архитектура. - 2013. - Вып. 33 (52). - С. 6-12.
  8. FEA: св-во о гос. рег. программы для ЭВМ № 2015617889 / А.Н. Богомолов [и др.]. Зарег. 23 июля 2015 г.
  9. Устойчивость (напряженно-деформированное состояние): св-во о гос. рег. программы для ЭВМ № 2009613499 / А.Н. Богомолов [и др.]. Зарег. 30 июня 2009 г.
  10. Соколовский В.В. Статика сыпучей среды. - 3-е изд., перераб. и доп. - М.: Физ.-мат. лит., 1960. - 121 с.
  11. Соколовский В.В. Теория пластичности. - 3-е изд., перераб. и доп. - М.: Высшая школа, 1969. - 608 c.
  12. Богомолов А.Н., Богомолова О.А. Сопоставление результатов численных и физических экспериментов по определению несущей способности однородного основания штампа // Основания, фундаменты и механика грунтов. - 2015. - № 6. - С. 7-11.

Статистика

Просмотры

Аннотация - 116

Ссылки

  • Ссылки не определены.

© Богомолов А.Н., Абрамов Г.А., Богомолова О.А., Пристансков А.А., Ермаков О.В., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах