СОВЕРШЕНСТВОВАНИЕ МЕТОДА РАСЧЕТА ОСАДОК СВАЙНЫХ ФУНДАМЕНТОВ РЕЗЕРВУАРОВ С УЧЕТОМ ПОВТОРЯЕМОСТИ ИХ НАГРУЖЕНИЯ И РАЗГРУЗКИ

Аннотация


Объектом исследования являются железобетонные сваи и их совместная работа с грунтом в составе свайных фундаментов резервуаров. В результате анализа состояния вопроса о приращении осадок свайных фундаментов резервуаров установлено, что их значения в ходе повторяемости циклов нагружения-разгрузки могут значительно увеличиваться. При этом отмечаются случаи превышения предельно допустимых осадок и кренов свайных фундаментов уже после выполнения гидростатических испытаний и сдачи резервуаров в эксплуатацию. В опубликованных работах отмечается, что около 70 % аварий резервуаров связаны с неравномерными осадками свайных фундаментов. Существующие методы расчета осадок не учитывают их приращения в ходе циклов нагружения и разгрузки. Автором предлагается метод расчета осадок свайных фундаментов резервуаров, учитывающий особенности их эксплуатации. За основу принят метод послойного суммирования осадок основания для условного свайного фундамента. Расчет дополнительной осадки выполняется с использованием аппроксимирующей функции. При этом учитывается изменение отношения приведенного модуля деформации грунта в основании свай, полученного в ходе статических испытаний, к модулю упругости этого же грунта. Для расчета приведенного модуля деформации грунта использовался метод И.З. Гольдфельда (2011 г.). Разработанный автором метод расчета осадки был апробирован при проектировании свайного фундамента резервуара в Темрюкском районе (Краснодарский край). В процессе мониторинга технического состояния резервуара (Темрюкский район) была получена удовлетворительная сходимость результатов расчета его осадок с данными натурных наблюдений.

Полный текст

Введение Характерная особенность эксплуатации вертикальных стальных резервуаров состоит в том, что масса жидкости, хранящаяся в них, значительно превышает массу их строительных конструкций [1]. Деформации основания свайных фундаментов резервуаров, а также их неравномерности не всегда соответствуют результатам расчетов, что приводит к кренам и авариям. Также отмечено, что расчеты свайных фундаментов резервуаров не всегда обеспечивают необходимый запас их несущей способности, а осадки фундаментов в большинстве случаев превышают расчетные [2]. Согласно данным последних исследований [3-5], около 70 % от всех аварий резервуаров связаны с кренами и их неравномерными осадками. При этом превышение допустимых осадок возникает уже после гидростатических испытаний, когда резервуар эксплуатируется в штатном режиме. Фундаменты вертикальных стальных резервуаров в процессе их эксплуатации испытывают на себе влияние циклов нагрузки и разгрузки, что приводит к возникновению дополнительных осадок. При этом на сегодняшний день практически отсутствуют общепринятые методы расчета приращений осадок свайных фундаментов. Исследованием прогноза осадок свай и свайных фундаментов резервуаров в ходе циклов нагружения-разгрузки занимались Ю.Л. Винников, В.Л. Седин, К.Ш. Шадунц, H. Brandl и др. [6-8]. В работе [8] предлагается инженерный метод расчета дополнительных осадок свайных фундаментов резервуаров на глинистых грунтах. Метод основан на использовании усредненного модуля деформации, полученного в результате статических испытаний свай при нескольких циклах нагружения и разгрузки. Полная осадка свайного фундамента резервуара при этом рассчитывается по формуле [8] (1) где k - коэффициент, численно равный количеству циклов, требуемому для затухания приращений деформаций; - усредненный модуль деформации основания условного фундамента, полученный в ходе статических испытаний свай при нескольких циклах нагружения и разгрузки. Представленный в работе [8] метод не учитывает упругое поднятие грунта в стадиях разгрузки фундамента резервуара, а также затухающий характер приращения осадки. Использование свай для определения модуля деформации грунта проводилось неоднократно [9-11]. Отмечается, что на первых ступенях нагружения 70-90 % нагрузки приходится на боковую поверхность сваи. При этом после достижения определенной (сдвиговой) осадки сваи сопротивление грунта по боковой поверхности полностью исчерпывается и основная часть внешней нагрузки передается на пяту [9, 12]. В результате анализа статических испытаний буронабивных свай в глинистых грунтах отмечается, что активное включение нижнего конца свай в работу начинается при нагрузках, больших 60 % от предельно допустимых [13]. Следовательно, в диапазоне нагрузок от 60 до 100 % от предельно допустимых нижний конец буронабивной сваи работает как нагруженный жесткий штамп на уплотняемом основании. На начальном этапе уплотнения основания штампом можно определить его деформационные характеристики. Выводы о возможности представления работы нижнего конца сваи как штампа в стадии уплотнения основания были сделаны Ф.К. Лапшиным в ходе натурных штамповых испытаний [14]. Метод расчета приращений осадки График зависимости осадки натурной сваи от нагрузки в процессе статических испытаний в общем виде представлен на рис. 1. В рассматриваемом случае можно выделить ветви первичного, повторного нагружений и разгрузки. На основе данных статических испытаний свай можно также судить о конечной осадке фундаментов и выделить характеристики деформируемости грунтов в основании свайного фундамента [9]. Рис. 1. Расчетная схема приращения осадки условного свайного фундамента с учетом его разгрузки и последующего повторного нагружения Fig. 1. The calculation scheme of the increment of a conditional pile foundation’s settlement taking into account its unloading and subsequent reloading За основу предлагаемого метода расчета приращения осадки свайного фундамента резервуара принята схема «условного фундамента», используемая в нормативной литературе. Рассматривается вертикальный стальной резервуар на свайном фундаменте из буронабивных свай, объединенных ростверком в виде сплошной монолитной железобетонной плиты. Расчет базируется на методе послойного суммирования, который рекомендуется к использованию при определении осадки фундаментов резервуаров с некоторыми корректировками. Для определения нижней границы сжимаемой толщи следует использовать условие Также для определения распределения напряжений используются значения коэффициента α, зависящие от отношения глубины рассматриваемой точки к радиусу фундамента z/R [1]. К существующему методу добавляется приращение осадки в ходе второго цикла нагружения-разгрузки резервуара Следовательно, конечная осадка фундамента при повторном нагружении будет рассчитываться по формуле (2) где - конечная осадка при повторном нагружении свайного фундамента; - осадка на первом цикле нагружения свайного фундамента; - приращение осадки на втором цикле нагружения-разгрузки резервуара. С учетом того что второй цикл нагружения разделен на две составляющих - ветвь разгрузки и повторного нагружения, формула для расчета приращения осадки будет иметь следующий вид: (3) где - относительная осадка фундамента на второй стадии нагружения; - отрицательное перемещение фундамента на стадии разгрузки; - приведенный модуль деформации основания, получаемый при использовании ветви вторичного нагружения на статических испытаниях свай; - модуль упругости основания, получаемый при использовании ветви разгрузки на статических испытаниях свай. В качестве основной характеристики сжимаемости основания в предлагаемом методе расчета используется приведенный модуль деформации, который представляет собой усредненное значение модуля деформации в пределах сжимаемой толщи основания фундамента. Для его получения по результатам статических испытаний предлагается использовать метод, предложенный И.З. Гольдфельдом [9]. Введем дополнительный коэффициент k, выражающий затухание осадки на втором цикле нагружения: (4) Из формулы (4) видно, что при стремлении значений модуля деформации уплотненного при первичном нагружении грунта к модулю упругости этого же грунта коэффициент k стремится к нулю, тем самым выражая затухание приращений осадок. Введя коэффициент k в формулу (3), получим: (5) При количестве циклов нагружения и разгрузки фундаментов резервуара, стремящихся к бесконечности, получим уравнение для определения конечной осадки: (6) где - сумма приращений осадки в период эксплуатации резервуара, которое рассчитывается по формуле (7) где - аппроксимирующая функция, выражающая зависимость модуля деформации упрочненного грунта от числа циклов нагружения и разгрузки фундаментов сооружения. Учитывая, что в процессе эксплуатации модуль деформации грунтов уплотненного основания будет стремиться к модулю упругости , значения аппроксимирующей функции будут стремиться к нулю, что делает интеграл в уравнении (7) сходящимся и позволяет определить конечное значение приращения осадки свайного фундамента резервуара. Уравнение аппроксимирующей функции (7) можно получить в результате обработки экспериментальных данных статических испытаний свай в несколько циклов нагружения и разгрузки. Предлагаемый метод использовался при проектировании фундамента свайного резервуара емкостью в 50 000 м3 в Темрюкском районе Краснодарского края. Фундамент был выполнен из буронабивных свай диаметром 800 мм и длиной 16 м, объединенных ростверком в виде сплошной монолитной железобетонной плиты. Основанием фундаментов служат глины с прослоями полускальных диатомитов, не выдержанные по толщине и обладающие неравномерной сжимаемостью. На рассматриваемой площадке были выполнены статические испытания грунтов сваями в три цикла нагружения-разгрузки. Всего были выполнены испытания трех буронабивных свай по данному методу. Результаты испытаний для сваи № 2 приведены на рис. 2. Для определения характеристик деформируемости (приведенный модуль деформации) использовался метод И.З. Гольдфельда [9]: (8) где - приведенный модуль деформации основания, МПа; m - коэффициент Пуассона грунта основания; N - нагрузка, приходящаяся на сваю, МН; d - диаметр ствола модели сваи, м; L - глубина погружения острия сваи ниже уровня планировки, м; S - осадка сваи, м. Рис. 2. Результаты статических испытаний сваи № 2 с учетом цикличности ее нагружения Fig. 2. The results of static tests of pile No. 2 taking into account its loading repeatability Результаты определения приведенного модуля деформации на трех циклах нагружения сведены в табл. 1. Таблица 1 Результаты определения характеристик деформируемости основания Table 1 The results of determining the deformation characteristics of foundations Номер цикла нагружения Осадка за цикл S, мм Приведенный модуль деформации основания Eпр, МПа Модуль упругости основания Е0, МПа 1 26,5 10,74 23,14 2 22,7 12,21 3 20,9 13,62 На основе анализа ранее выполненных исследований [3, 15] можно сделать вывод о том, что зависимость отношения от числа циклов нагружения лучше всего описывается экспоненциальной кривой. Аппроксимирующая функция, необходимая для расчета приращения осадки в формуле (7), приведена на рис. 3. С использованием полученной аппроксимирующей функции по формулам (6) и (7) были рассчитаны промежуточные (с первого по пятый циклы нагружения), а также конечное значение осадок фундамента резервуара. Полученные результаты сравнивались с данными наблюдений за осадками фундаментов в процессе гидростатических испытаний и дальнейшей эксплуатации. Данные расчетов приведены в табл. 2. Рис. 3. Аппроксимирующая функция для расчета приращения осадки фундамента резервуара Fig. 3. Approximating function for calculating the increment of the tank foundation’s settlement Таблица 2 Сравнение результатов расчета осадок фундамента резервуара в процессе его эксплуатации с данными наблюдений Table 2 Comparison of the calculation results of the tank foundation’s settlement under operation with the observational data Номер цикла нагружения Осадка фундамента с учетом приращения, мм Расчетное приращение осадки за цикл нагружения-разгрузки, мм Осадка фундамента по результатам наблюдений, мм Наблюдаемое приращение осадки за цикл нагружения-разгрузки, мм Осадка фундамента по результатам расчета по методу послойного суммирования (без учета приращения осадки) [1], мм 1 178,3 - 76 - 178,3 2 249,92 71,62 109 33 3 299,28 49,36 166 57 4 337,44 38,16 210 44 5 366,4 28,96 251 41 Конечная осадка 471,52 293,22 - - Выводы 1. Установлено, что осадки свайных фундаментов резервуаров в процессе повторяемости их нагружения (после разгрузки) постепенно возрастают и могут достигать величин, превышающих предельные значения. При этом до настоящего времени не разработаны инженерные методы расчета осадки свайных фундаментов на действие повторяющихся циклов нагружения-разгрузки. 2. Усовершенствован инженерный метод расчета осадок свайных фундаментов, который учитывает их приращение в процессе повторных нагружений после разгрузки. На основании мониторинга технического состояния резервуара (Темрюкский район) получена удовлетворительная сходимость результатов расчета по предлагаемому методу с данными натурных наблюдений.

Об авторах

О. А Шмидт

Кубанский государственный аграрный университет

Список литературы

  1. Фундаменты стальных резервуаров и деформации их оснований / П.А. Коновалов [и др]. - М.: Изд-во АСВ, 2009. - 336 с.
  2. Mohan D., Jain J.R.S., Bhandari R.K. Remedial underpinning of stil1 tank foundation // Proc. ASCE, J. of the geotechnical engineering division. - 1978. - Vol. 104, no. 5. - Р. 639-655.
  3. Brandl H. Cyclic preloading of piles to minimize (differential) settlements of high-rise buildings. - Bratislava: Slovak University of Technology, 2006. - P. 1-12.
  4. Волков В.Н., Попова Н.В., Бурмистрова О.Н. Оценка работоспособности резервуаров для хранения нефтепродуктов в условиях Республики Коми [Электронный ресурс] // Современные проблемы науки и образования. - 2014. - № 4. - 8 с. - URL: https://science-education.ru/ru/article/view?id=13855 (дата обращения: 03.12.2017).
  5. Чепур П.В., Тарасенко А.А. Влияние параметров неравномерной осадки на возникновение предельных состояний в резервуаре // Фундаментальные исследования. - 2014. - № 8-7. - С. 1560-1564.
  6. Кондрашова О.Г., Назарова М.Н. Причинно-следственный анализ аварий вертикальных стальных резервуаров [Электронный ресурс] // Нефтегазовое дело. - 2004. - № 2. - 8 с. - URL: http://ogbus.ru/article/prichinno-sledstvennyj-analiz-avarij-vertikalnyx-stalnyx-rezervuarov/ (дата обращения: 03.12.2017).
  7. Седин В.Л., Винников Ю.Л., Бикус К.М. О влиянии повторных нагружений набивных свай в пробитых скважинах на деформативность их оснований // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2014. - № 3. - С. 112-120.
  8. Шадунц К.Ш., Ещенко О.Ю., Угринов В.В. Испытания буронабивных свай фундаментов крупных резервуаров // Сб. науч. тр. КубГАУ. - Краснодар: Изд-во КубГАУ. - 2003. - С. 37-42.
  9. Гольдфельд И.З., Смирнова Е.А. Графоаналитическая обработка результатов статических испытаний грунтов забивными сваями и зондированием // Основания, фундаменты и механика грунтов. - 2011. - № 5. - С. 35-40.
  10. Корякин В.С. О роли пяты в общем сопротивлении буронабивных свай // Основания, фундаменты и механика грунтов: материалы III Всесоюз. сов. - Киев: Будивельник, 1971. - С. 312-315.
  11. Левенстамм В.В., Горевой М.М. Методы определения деформационных характеристик крупнообломочных грунтов // Строительство и техногенная безопасность. - 2005. - № 11. - С. 92-94.
  12. Davisson M.T. High capacity piles // Proceedings, Lecture Series, Innovationsin Foundation Construction, ASCE, Illinous Section. - 1972. - 52 p.
  13. Ляшенко П.А., Шмидт О.А., Гохаев Д.В. Анализ результатов статических испытаний натурных буровых свай в глинистых грунтах [Электронный ресурс] // Строительство и архитектура. Опыт и современные технологии. - 2015 - № 4. - 6 с. - URL: http://sbornikstf.pstu.ru/council/?n=4&s=249 (дата обращения: 03.12.2017).
  14. Лапшин Ф.К. Расчет свай по предельным состояниям. - Саратов: Изд-во Саратов. ун-та, 1979. - 152 с.
  15. Шмидт О.А. Анализ результатов статических испытаний натурных буровых свай в глинистых грунтах при повторном нагружении // Строительство: новые технологии - новое оборудование. - 2017. - № 8. - С. 36-40.

Статистика

Просмотры

Аннотация - 134

Ссылки

  • Ссылки не определены.

© Шмидт О.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах