Application of machine learning algorithms for enhanced modeling of a carbonate reef reservoir
- Authors: Krivoschekov S.N1, Kochnev A.A1, Putilov I.S1, Shirinkin D.O1, Botalov A.N1, Ozhgibesov E.S1, Chalova P.O1
- Affiliations:
- Perm National Research Polytechnic University
- Issue: Vol 25, No 1 (2025)
- Pages: 9-20
- Section: ARTICLES
- URL: https://ered.pstu.ru/index.php/geo/article/view/4466
- DOI: https://doi.org/10.15593/2712-8008/2025.1.2
- Cite item
Abstract
Full Text
2About the authors
S. N Krivoschekov
Perm National Research Polytechnic University
A. A Kochnev
Perm National Research Polytechnic University
I. S Putilov
Perm National Research Polytechnic University
D. O Shirinkin
Perm National Research Polytechnic University
A. N Botalov
Perm National Research Polytechnic University
E. S Ozhgibesov
Perm National Research Polytechnic University
P. O Chalova
Perm National Research Polytechnic University
References
- Diagenetic process and their effect on reservoir quality in Miocene carbonate reservoir Offshore, Sarawak, Malaysia / H.T. Janjuhah, A.M.A. Salim, D. Ghosh, A. Wahid // In Proceedings of the International Conference on Integrated Petroleum Engineering and Geosciences. – Singapore, 2016. doi: 10.1007/978-981-10-3650-7_48
- Farzaneh, S.A. Using diagenetic processes in facies modeling of a carbonate reservoir / S.A. Farzaneh, A.A. Dehghan, A. Lakzaie // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. – 2013. – No. 35 (6). – P. 516–528. doi: 10.1080/15567036.2010.504946
- Study of the influence of nonlinear dynamic loads on elastic modulus of carbonate reservoir rocks / E. Riabokon, M. Turbakov, E. Kozhevnikov, V. Poplygin, M. Guzev // Energies. – 2021. – Vol. 14, no. 24. doi: 10.3390/en14248559
- Progress of research on dolomitization and dolomite reservoir / Q. Huang, W. Liu, Y. Zhang, S. Shi, K. Wang // Advances in Earth Science. – 2015. – No. 30 (5). – P. 539. doi: 10.11867/j.issn.1001-8166.2015.05.0539
- A review of development methods and EOR technologies for carbonate reservoirs / Z.X. Xu., S.Y. Li, B.F. Li, D.Q. Chen, Z.Y. Liu, Z.M. Li // Petroleum Science. – 2020. – No. 17. – P. 990–1013. doi: 10.1007/s12182-020-00467-5.
- Щербаков, А.А. Оценка эффективности мероприятий по интенсификации добычи нефти (на примере месторождений Соликамской депрессии) / А.А. Щербаков, Г.П. Хижняк, В.И. Галкин // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2019. – № 2. – С. 70–73. doi: 10.30713/2413-5011-2019-2-70-73
- Ерофеев, А.А. Оценка условий применения методов обработки кривых восстановления давления скважин в карбонатных коллекторах / А.А. Ерофеев, И.Н. Пономарева, М.С. Турбаков // Инженер-нефтяник. – 2011. – № 3. – С. 12–15.
- Production optimization for water flooding in fractured-vuggy carbonate reservoir–From laboratory physical model to reservoir operation / B. Yang, J. He, D. Lyu, H. Tang, J. Zhang, X. Li, J. Zhao // Journal of Petroleum Science and Engineering. – 2020. – No. 184. – P. 106520. doi: 10.1016/j.petrol.2019.106520
- Mechanistic Study and Optimization of High Water Cut Phase Management Strategies in Fracture-Vuggy Carbonate Reservoirs with Bottom Water / M. Zhao, X. Xin, G. Yu, R. Hu, Y. Gong // Processes. – 2023. – No. 11. – P. 3135. doi: 10.3390/pr11113135
- Waterflooding in giant carbonate reservoir; successes and challenges / S. Mahmood, P. Salazar, X. Zhao, M. Pointing, A. Sayed // In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference. – Abu Dhabi, UAE, 2017. doi: 10.2118/188532-MS
- Integrated Waterflooding Effect Evaluation Methodology for Carbonate Fractured-Vuggy Reservoirs Based on the Unascertained Measure–Mahalanobis Distance Theory / Z. Su, S. Gao, Z. Li, T. Li, N. Kang // Processes. – 2024. – No. 12. – P. 274. doi: 10.3390/pr12020274
- Jiao, F. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim basin NW China / F. Jiao // Petroleum Exploration and Development, – 2019. – No. 46 (3). – P. 576–582. doi: 10.1016/S1876-3804(19)60037-6
- Dehghani, K. Modeling of waterflood in a vuggy carbonate reservoir / K. Dehghani, K.A. Edwards, P.M. Harris // In Proceedings of the SPE Annual Technical Conference and Exhibition. – San Antonio, Texas, 1997. doi: 10.2118/38567-MS
- Cho, Y. Stochastic discrete fracture network modeling in shale reservoirs via integration of seismic attributes and petrophysical data / Y. Cho // Interpretation. – 2021. – No. 9 (4). – P. SG47–SG58. doi: 10.1190/INT-2020-0210.1
- Impact and lessons of using high permeability streaks in history matching a giant offshore Middle East carbonate reservoir / K.M. Brantferger, G.S. Kompanik, H.M. Al-Jenaibi, W.S. Dodge, H. Patel // In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference. – Abu Dhabi, United Arab Emirates, 2012. doi: 10.2118/161426-MS
- High Permeability Streaks Characterisations in Middle East Carbonate / E. Poli, C. Maza, A. Virgone, F. Gisquet, C. Fraisse, P. Cecile // In Proceedings of the International Petroleum Technology Conference. – Doha, Qatar, 2009. doi: 10.2523/IPTC-13385-ABSTRACT
- Using Machine Learning to Capture High-Permeability Streaks in Reservoir Models / S. Manish Kumar, P. Humberto, E.J. Obeida, B.J. Houcine, K.K. Chakib, M. Hussein // In Proceedings of the ADIPEC. – Abu Dhabi, UAE, 2022. doi: 10.2118/211661-MS
- A systematic review of data science and machine learning applications to the oil and gas industry / Z. Tariq, M.S. Aljawad, A. Hasan, M. Murtaza, E. Mohammed, A. El Husseiny, S. Alarifi, M. Mahmoud, A. Abdulraheem // Journal of Petroleum Exploration and Production Technology. – 2021. – No. 11. – P. 4339–4374. doi: 10.1007/s13202-021-01302-2
- Choubey, S. Artificial intelligence techniques and their application in oil and gas industry / S. Choubey, G.P. Karmakar // Artificial Intelligence Review. – 2021. – No. 54 (5). – P. 3665–3683. doi: 10.1007/s10462-020-09935-1
- An Anomaly Detection Model for Oil and Gas Pipelines Using Machine Learning / S.S. Aljameel, D.M. Alomari, S. Alismail, F. Khawaher, A.A. Alkhudhair, F. Aljubran, R.M. Alzannan // Computation. – 2022. – No. 10. – P. 138. doi: 10.3390/computation10080138
- Application of machine learning and artificial intelligence in oil and gas industry / A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, H. Oza // Petroleum Research. – 2021. – No. 6 (4). – P. 379–391. doi: 10.1016/j.ptlrs.2021.05.009
- Fluid and lithofacies prediction based on integration of well-log data and seismic inversion: A machine-learning approach / L. Zhao, C.Zou, Y. Chen, W. Shen, Y. Wang, H. Chen, J. Geng // Geophysics. – 2021. – No. 86 (4). – P. M151–M165. doi: 10.1190/geo2020-0521.1
- Machine learning based fluids and lithofacies prediction based on the integration of well logging data and seismic inversion / C. Zou, L. Zhao, Y. Chen, Y. Wang // In Proceedings of the SEG 2020 Workshop: 2nd SEG Borehole Geophysics. – 2020. DOI: 2020.10.1190/bhgp2020-32.1
- Talebkeikhah, M. A comparison of machine learning approaches for prediction of permeability using well log data in the hydrocarbon reservoirs / M. Talebkeikhah, Z. Sadeghtabaghi, M. Shabani // Journal of Human, Earth, and Future. – 2021. – No. 2. – P. 82–99. doi: 10.28991/HEF-2021-02-02-01
- Wood, D.A. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data / D.A. Wood // Journal of Petroleum Science and Engineering. – 2020. – No. 184. – P. 106587. doi: 10.1016/j.petrol.2019.106587
- Miah, M.I. Log data-driven model and feature ranking for water saturation prediction using machine learning approach / M.I. Miah, S. Zendehboudi, S. Ahmed // Journal of Petroleum Science and Engineering. – 2020. – No. 194. – P. 107291. doi: 10.1016/j.petrol.2020.107291
- Bestagini, P. A machine learning approach to facies classification using well logs / P. Bestagini, V. Lipari, S. Tubaro // In Proceedings of the SEG International Exposition and Annual Meeting. – Houston, Texas, 2017. doi: 10.1190/segam2017-17729805.1
- Salehi, S.M. Automatic identification of formation iithology from well log data: a machine learning approach / S.M. Salehi, B. Honarvar // Journal of Petroleum Science Research. – 2014. – No. 3. – P. 73–82. doi: 10.14355/jpsr.2014.0302.04
- Well-Logging based lithology prediction using Machine Learning / Y. Meshalkin, A. Shakirov, D. Orlov, D. Koroteev // Data Science in Oil & Gas. – 2020. – No. 2020 (1). – P. 1–5. doi: 10.3997/2214-4609.202054010
- A machine-learning-based approach to assistive well-log correlation / S. Brazell, A.C. Bayeh, M. Ashby, D. Burton // Petrophysics. – 2019. – No. 60 (4). – P. 469–479. doi: 10.30632/PJV60N4-2019a1
- Application of Machine Learning for Lithofacies Prediction and Cluster Analysis Approach to Identify Rock Type / M. Hussain, S. Liu, U. Ashraf, M. Ali, W. Hussain, N. Ali, A. Anees // Energies. – 2022. – No. 15. – P. 4501. doi: 10.3390/en15124501
- Permeability Prediction Using Rock-Typing, Flow Zone Indicator and Machine Learning Techniques in a Brownfield Offshore Malaysia / B. Kantaatmadja, F. Kasim, W.N.S. Zainudin, E. Elsebakhi, E. Jr, A. Ali // In Proceedings of the International Petroleum Technology Conference, Virtual. – 2021. doi: 10.2523/IPTC-21436-MS
- Al Khalifah, H. Permeability prediction and diagenesis in tight carbonates using machine learning techniques / H. Al Khalifah, P.W.J. Glover, P. Lorinczi // Marine and Petroleum Geology. – 2020. – No. 112. – P. 104096. doi: 10.1016/j.marpetgeo.2019.104096
- Alameedy, U.S. Evaluating machine learning techniques for carbonate formation permeability prediction using well log data / U.S. Alameedy, A.T. Almomen, N. Abd // The Iraqi Geological Journal. – 2023. – No. 56. – P. 175–187. doi: 10.46717/igj.56.1D.14ms-2023-4-23
- High Permeability Streak Identification and Modelling Approach for Carbonate Reef Reservoir / D. Shirinkin, A. Kochnev, S. Krivoshchekov, I. Putilov, A. Botalov, N. Kozyrev, E. Ozhgibesov // Energies. – 2024. – No. 17. – P. 236. doi: 10.3390/en17010236
- Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions / D. Otchere, T. Ganat, J. Ojero, B.N. Tackie-Otoo, M. Taki // Journal of Petroleum Science and Engineering. – 2022. – No. 208. – P. 109244. doi: 10.1016/j.petrol.2021.109244
- Abbas, M.A. Improving permeability prediction in carbonate reservoirs through gradient boosting hyperparameter tuning / M.A. Abbas, W.J. Al-Mudhafar, D.A. Wood // Earth Science Informatics. – 2023. – No. 16 (4). – P. 3417–3432. doi: 10.1007/s12145-023-01099-0
- Rahimi, M. Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield / M. Rahimi, M.A. Riahi // Journal of Applied Geophysics. – 2022. – No. 201. – P. 104640. doi: 10.1016/j.jappgeo.2022.104640
- Amagada, P.U. An Inferable Machine Learning Approach for Reservoir Lithology Characterization Using Drilling Data / P.U. Amagada // In Proceedings of the SPE Annual Technical Conference and Exhibition. – San Antonio, Texas, USA, 2023. doi: 10.2118/217485-STU
- A systematic machine learning method for reservoir identification and production prediction / W. Liu, Z. Chen, Y. Hu, L. Xu // Petroleum Science. – 2023. – No. 20 (1). – P. 295–308. doi: 10.1016/j.petsci.2022.09.002
- Li, W. Machine learning and data analytics for geoscience applications—Introduction / W. Li, W. Hu, A. Abubakar // Geophysics. – 2020. – No. 85 (4). – P. WAi–WAii. doi: 10.1190/geo2020-0518-spseintro.1
- A mini-review of machine learning in big data analytics: Applications, challenges, and prospects / I.K. Nti, J.A. Quarcoo, J. Aning, G.K. Fosu // Big Data Mining and Analytics. – 2022. – No. 5 (2). – P. 81–97. doi: 10.26599/BDMA.2021.9020028
- Maganathan T., Senthilkumar S., Balakrishnan V. Machine learning and data analytics for environmental science: a Review, Prospects and Challenges / T. Maganathan, S. Senthilkumar, V. Balakrishnan // IOP Conference Series: Materials Science and Engineering. – 2020. – No. 955 (1). – P. 012107. doi: 10.1088/1757-899X/955/1/012107
- Enhanced Reservoir Description: Using Core and Log Data to identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells / J.O. Amaefule, M. Altunbay, D. Tiab, D. Kersey, D. Keelan // In Proceedings of the SPE Annual Technical Conference and Exhibition. – Houston, Texas, 1993. doi: 10.2118/26436-MS
- Garrouch, A.A. Exploring the link between the flow zone indicator and key open-hole log measurements: An application of dimensional analysis / A.A. Garrouch, A.A. Al-Sultan // Petroleum geoscience. – 2019. – No. 25. – P. 219–234. doi: 10.1144/petgeo2018-035
Statistics
Views
Abstract - 20
PDF (Russian) - 15
PDF (English) - 4
Refbacks
- There are currently no refbacks.