The influence of carbon sequestration in rocks on the change in filtration and mechanical characteristics of the reservoir during additional oil reserve recovery

Abstract


CCUS (Carbon Capture, Utilization and Storage) is becoming a key technology for achieving a significant reduction in global carbon emissions over the next century, which is why the issues of carbon sequestration in natural porous media have recently received increasing attention in the scientific community. Foreign scientists have obtained some laboratory developments, and carbon sequestration projects have already been implemented in a number of countries. For Russia, carbon sequestration in porous geological media is promising due to the significant potential of underground CO2 storage tanks, the possibility of using CO2 to enhance oil recovery, as well as the developed infrastructure of oil and gas fields. The Volga-Ural oil and gas province may become one of the promising regions for the creation of a CCUS cluster due to a combination of such factors on the territory as a significant number of CO2-emitting enterprises and a huge number of oil and gas traps potentially suitable for the use of enhanced oil recovery methods and / or CO2 disposal. The article discusses the principles of carbon sequestration in reservoir rocks, the main mechanisms of capture that operate when CO2 enters a geological repository; it is shown that research in the field of underground CO2 storage is aimed at reducing the uncertainty in the efficiency of CO2 storage in rocks, however, the effect of CO2 on natural porous media is currently poorly understood. Laboratory studies are required, followed by the development of mathematical models of the rocks interaction with various carbon gases types to develop recommendations for optimal modes of carbon injection into the reservoir for the purpose of additional oil recovery in the short term and carbon absorption by the rock and its storage in the long term.

Full Text

7

About the authors

A. A Shcherbakov

Perm National Research Polytechnic University

M. S Turbakov

Perm National Research Polytechnic University

H. Jing

China University of Mining and Technology

L. Yu

China University of Mining and Technology

hmin G S.G. Ashi

Perm National Research Polytechnic University

u. S Shcherbakova

Perm National Research Polytechnic University

References

  1. Enhancing investment strategies for CCUS deployment in China: implications from a real options-based multiphase unequal investment approach / Y. Chang, S. Gao, Y. Wei, G. Li // Environment, Development and Sustainability. – 2024. doi: 10.1007/s10668-024-05693-0
  2. Sun, B. Investment Decisions of CCUS Projects in China Considering the Supply–Demand Relationship of CO2 from the Industry Symbiosis Perspective / B. Sun, J. Tao // Sustainability. – 2024. – Vol. 16, no. 12. – P. 5273. doi: 10.3390/su16125273
  3. Balaji, K. Carbon dioxide pipeline route optimization for carbon capture, utilization, and storage: A case study for North-Central USA / K. Balaji, M. Rabiei // Sustainable Energy Technologies and Assessments. – 2022. – Vol. 51. – P. 101900. doi: 10.1016/j.seta.2021.101900
  4. Overview of Typical Projects for Geological Storage of CO2 in Offshore Saline Aquifers / L. Li, Y. Liu, Y. Li [et al.] // Liquids. –2024. – Vol. 4, no. 4. – P. 744–767. doi: 10.3390/liquids4040042
  5. Hansen, L.M. Australia well positioned to become a CCUS leader / L.M. Hansen // The APPEA Journal. – 2022. – Vol. 62, no. 2. – P. S25–S28. doi: 10.1071/AJ21107
  6. Cyclic confining pressure and rock permeability: Mechanical compaction or fines migration / E.V. Kozhevnikov, M.S. Turbakov, E.P. Riabokon, E.A. Gladkikh, V.V. Poplygin // Heliyon. – 2023. – Vol. 9, no. 11. – P. e21600. doi: 10.1016/j.heliyon.2023.e21600
  7. Apparent Permeability Evolution Due to Colloid Migration Under Cyclic Confining Pressure: On the Example of Porous Limestone / E.V. Kozhevnikov, M.S. Turbakov, E.P. Riabokon, E.A. Gladkikh // Transport in Porous Media. – 2024. – Vol. 151, no. 2. – P. 263–286. doi: 10.1007/s11242-023-01979-5
  8. Influence of Frequency of Wave Action on Oil Production / V.V. Poplygin, C. Qi, M.A. Guzev, E.P. Riabokon, M.S. Turbakov, E.V. Kozhevnikov // International Journal of Engineering. – 2022. – Vol. 35, no. 11. – P. 2072–2076. doi: 10.5829/IJE.2022.35.11B.02
  9. Assessment of the Elastic-Wave Well Treatment in Oil-Bearing Clastic and Carbonate Reservoirs / V. Poplygin, C. Qi, M. Guzev, E. Kozhevnikov, A. Kunitskikh, E. Riabokon, M. Turbakov // Fluid Dynamics & Materials Processing. – 2023. – Vol. 19, no. 6. – P. 1495–1505. doi: 10.32604/fdmp.2023.022335
  10. Reservoir evaluation of dolomitized Devonian strata in the Western Canada Sedimentary Basin: implications for carbon capture, utilization, and storage / J. Stacey, H. Corlett, C. Hollis, D. Hills // Journal of Sedimentary Research. – 2024. – Vol. 94, no. 3. – P. 334–353. doi: 10.2110/jsr.2023.082
  11. Effects of ultrasonic oscillations on permeability of rocks during the paraffinic oil flow / E. Riabokon, E. Gladkikh, M. Turbakov, E. Kozhevnikov, M. Guzev, N. Popov, P. Kamenev // Geotechnique Letters. – 2023. – V. 13, no. 3. – P. 151–157. doi: 10.1680/jgele.22.00137
  12. Геологический потенциал улавливания и хранения диоксида углерода в Российской Федерации / М.Г. Дымочкина, М.С. Самодуров, В.А. Павлов, А.В. Пенигин, О.С. Ушмаев // Нефтяное хозяйство. – 2021. – № 12. – С. 20–23.
  13. The Rehbinder Effect in Testing Saturated Carbonate Geomaterials / E. Riabokon, M. Turbakov, E. Kozhevnikov, V. Poplygin, H. Jing // Materials. – 2023. Vol. 16, no. 8. – P. 3024. doi: 10.3390/ma16083024
  14. Bachu S. Aquifer disposal of CO2: Hydrodynamic and mineral trapping / S. Bachu, W.D. Gunter, E.H. Perkins // Energy Conversion and Management. – 1994. – Vol. 35, no. 4. – P. 269–279. doi: 10.1016/0196-8904(94)90060-4
  15. IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change / B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer (eds.). – Cambridge, United Kingdom, New York: Cambridge University Press, 442 p.
  16. Snippe, J. CO2 fate comparison for depleted gas field and dipping saline aquifer / J. Snippe, O. Tucker // Energy Procedia. – 2014. – Vol. 63. – P. 5586–5601. doi: 10.1016/j.egypro.2014.11.592
  17. Gunter, W.D. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage for carbon dioxide / W.D. Gunter S. Benson, S. Bachu // Geological Society, London, Special Publications. – 2004. – No. 233. – Р. 129–145. doi: 10.1144/GSL.SP.2004.233.01.09
  18. Оценка возможности захоронения углекислого газа в Северо-Ставропольском ПХГ / А.В. Тудвачев, П.К. Коносавский, С.А. Переверзева, В.В. Тихомиров // Материалы Всероссийской научной конференции с международным участием «Геотермальная вулканология, гидрогеология, геология нефти и газа» (Geothermal Volcanology Workshop 2020). – 2020. – С. 147–150.
  19. Polak, S. Reservoir simulation study of CO2 storage and CO2-EGR in the Atzbach-Schwanenstadt gas field in Austria / S. Polak, A.-A. Grimstad // Energy Procedia. – 2009. – Vol. 1, no. 1. – P. 2961–2968.
  20. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation / A. Raza, R. Gholami, R. Rezaee, C. Han Bing, R. Nagarajan, M. Ali Hamid // Petroleum. – 2018. – Vol. 4, no 1. – P. 95. DOI: 107 10.1016/j.petlm.2017.05.005
  21. Zatsepina, O. Geological Storage of CO2 as Hydrate in a McMurray Depleted Gas Reservoir / O. Zatsepina, H. Hassanzadeh, M. Pooladi-Darvish // Gas Injection for Disposal and Enhanced Recovery. Part IV: Carbon Dioxide Storage. – 2014. – P. 311–329. doi: 10.1002/9781118938607.ch18
  22. CO2 storage in a depleted gas field: an overview of the CO2CRC Otway Project and initial results, / J. Underschultz, C. Boreham, T. Dance, L. Stalker, B. Freifeld, D. Kirste, J. Ennis-King // Int. J. Greenh. Gas Control. – 2011. – Vol. 5, no. 4. – P. 922–932. doi: 10.1016/j.ijggc.2011.02.009
  23. Enhanced Gas Recovery (EGR) with carbon dioxide sequestration: a simulation study of effects of injection strategy and operational parameters / S.A. Jikich, D.H. Smith, W.N. Sams, G.S. Bromhal // SPE Eastern Regional Meeting, Society of Petroleum Engineers. – Pittsburgh, Pennsylvania, 2003. – P. 1–10. doi: 10.2118/84813-MS
  24. Khan, C. Carbon dioxide injection for enhanced gas recovery and storage (reservoir simulation) / C. Khan, R. Amin, G. Madden // Egyptian Journal of Petroleum. – 2013. – Vol. 22, no. 2. – P. 225–240. doi: 10.1016/j.ejpe.2013.06.002
  25. A fresh approach to investigating CO2 storage: Experimental CO2–water–rock interactions in a low-salinity reservoir system / S.M. Farquhar, J.K. Pearce, G.K.W. Dawson, A. Golab, S. Sommacal, D. Kirste, D. Biddle, S.D. Golding // Chemical Geology. – 2015. – Vol. 399. – P. 98–122. doi: 10.1016/j.chemgeo.2014.10.006
  26. Matter, J.M. Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration / J.M. Matter, T. Takahashi, D. Goldberg // Geochemistry, Geophysics, Geosystems. – 2007. – Vol. 8, no. 2. – P. Q02001. doi: 10.1029/2006GC001427
  27. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions / S.C.M. Krevor, R. Pini, L. Zuo, S.M. Benson // Water Resources Research. – 2012. – Vol. 48, no. 2. – P. W02532. doi: 10.1029/2011WR010859
  28. Xiao, Y. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling / Y. Xiao, T. Xu, K. Pruess // Energy Procedia. – 2009. – Vol. 1, no. 1. – P. 1783–1790. doi: 10.1016/j.egypro.2009.01.233
  29. Regional fault-controlled shallow dolomitization of the Middle Cambrian Cathedral Formation by hydrothermal fluids fluxed through a basal clastic aquifer / J. Stacey, H. Corlett, G. Holland, A. Koeshidayatullah, C. Cao, P. Swart, S. Crowley, C. Hollis // GSA Bulletin. – 2021. – Vol. 133, no. 11–12. – P. 2355–2377. doi: 10.1130/B35927.1
  30. Применимость природных геологических объектов для хранения, захоронения и утилизации углекислого газа (обзор) / А.В. Корзун, А.В. Ступакова, Н.А. Харитонова [и др.] // Георесурсы. – 2023. – Т. 25, № 2. – С. 22–35. doi: 10.18599/grs.2023.2.2
  31. Colloidal-induced permeability degradation assessment of porous media / E.V. Kozhevnikov, M.S. Turbakov, E.A. Gladkikh, E.P. Riabokon, V.V. Poplygin, M.A. Guzev, C. Qi, H. Jing // Géotechnique Letters. – 2022. – Vol. 12, no. 3. – P. 217–224. doi: 10.1680/jgele.22.00017
  32. Colloid Migration As A Reason For Porous Sandstone Permeability Degradation During Coreflooding / E.V. Kozhevnikov, M.S. Turbakov, E.A. Gladkikh, E.P. Riabokon, V.V. Poplygin, M.A. Guzev, C. Qi, A.A. Kunitskikh // Energies. – 2022. – Vol. 15, no. 8. – P. 2845. doi: 10.3390/en15082845
  33. Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity / E.A. Al-Khdheeawi, S. Vialle, A. Barifcani, M. Sarmadivaleh, S. Iglauer // International Journal of Greenhouse Gas Control. – 2017. – Vol. 58. – P. 142–158. doi: 10.1016/j.ijggc.2017.01.012
  34. Iglauer, S. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration / S. Iglauer, C.H. Pentland, A. Busch // Water Resources Research. – 2015. – Vol. 51, no. 1. – P. 729–774. doi: 10.1002/2014WR015553
  35. Influence of injection well configuration and rock wettability on CO2 plume behaviour and CO2 trapping capacity in heterogeneous reservoirs / E.A. Al-Khdheeawi, S. Vialle, A. Barifcani, M. Sarmadivaleh, S. Iglauer // Journal of Natural Gas Science and Engineering. – 2017. – Vol. 43. – P. 190–206. doi: 10.1016/j.jngse.2017.03.016
  36. Гумеров, Ф.М. Перспективы применения диоксида углерода для увеличения нефтеотдачи пластов / Ф.М. Гумеров // Актуальные вопросы исследований пластовых систем месторождений углеводородов. – 2010. – Ч. II. – С. 93–108.
  37. Sæle, A.M. The Effect of Rock Type on CO2 Foam for CO2 EOR and CO2 Storage / A.M. Sæle, A. Graue, Z.P. Alcorn // International Petroleum Technology Conference. – Bangkok, Thailand, 2023. doi: 10.2523/IPTC-22918-MS
  38. Characteristics of CO2 foam plugging and migration: Implications for geological carbon storage and utilization in fractured reservoirs / Zh. Xu, Zh. Li, Zh. Liu, B. Li, Q. Zhang, L. Zheng, Y. Song, M.M. Husein // Separation and Purification Technology. – 2022. – Vol. 294. – P. 121191. doi: 10.1016/j.seppur.2022.121190
  39. Емельянов, К. Экономия на декарбонизации / К. Емельянов, Н. Зотов // Энергетическая политика. – 2021. – № 10 (164). – С. 26–37. doi: 10.46920/2409-5516_2021_10164_26
  40. Колокольцев, С.Н. Направление применения диоксида углерода Центрально-Астраханского газоконденсатного месторождения / С.Н. Колокольцев // Геология, география и глобальная энергия. –2016. – № 2 (61). – С. 47–56.
  41. Красноперова С.А. Проблема утилизации попутного нефтяного газа на примере нефтяного месторождения Удмуртской республики / С.А. Красноперова // Управление техносферой. – 2021. – Т. 4, № 1. – С. 63–74. doi: 10.34828/UdSU.2021.65.70.007
  42. Богомолова, Е.Ю. Хранение и утилизация углекислого газа в рамках исполнения газовой программы и повышения эффективности «зеленых инвестиций» / Е.Ю. Богомолова, И.Д. Елина, З.С. Кузьмина // Отходы и ресурсы. – 2022. – Т. 9, № 2. doi: 10.15862/17ECOR222
  43. An analytical compressive-shear fracture model influenced by thermally treated microcracks in brittle solids / X. Li, B. Chai, C. Qi, A.A. Kunitskikh, E.V. Kozhevnikov // Archive of Applied Mechanics. – 2023. – Vol. 93, no. 10. – P. 3765–3773. doi: 10.1007/s00419-023-02484-3
  44. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta / R. Schultz, R. Wang, Y.J. Gu, K. Haug, G. Atkinson // Journal of Geophysical Research: Solid Earth. – 2017. – Vol. 122, no. 1. – P. 492–505. doi: 10.1002/2016JB013570
  45. CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria / A. Mathieson [et al.] // The Leading Edge. – 2010. – Vol. 29, no. 2. – P. 216–222. doi: 10.1190/1.3304827

Statistics

Views

Abstract - 23

PDF (Russian) - 10

PDF (English) - 7

Refbacks

  • There are currently no refbacks.

Copyright (c) 2025 Shcherbakov A.A., Turbakov M.S., Jing H., Yu L., S.G. Ashi h.G., Shcherbakova u.S.